Normal Random Variables Question

Onetimeuser
Messages
2
Reaction score
0

Homework Statement



Problem 1 – Normal Random Variables

B) Y ~ N(300, 100). Pr (300 < Y < 320) = 0.4772

D) H ~ N(4000, 25). R = f(H) = 0.5H – 60. E(R) = 1940; Var(R) = 156.25I have a problem solving these problems above...I missed the class when we covered this subject and now I am lost upon solving them.. I hope somebody can help, thanks a lot
 
Physics news on Phys.org
For a normally distributed random variable,

<br /> P(a &lt; X &lt; b) = P(X &lt; b) - P(X &lt; a)<br />

For any random variable W, if a, b are real numbers,
and

<br /> Z = aW + b<br />

then

<br /> E(Z) = aE(W) + b, \quad Var(Z) = a^2 Var(W)<br />

(as long as the mean and variance of W exist)
 
Thanks for the reply!

However, when I plug it in I dnt get the right answer... did u check if the given answer is right?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top