Normalize function - quantum chemistry

kanciara
Messages
1
Reaction score
0
Homework Statement
Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector
Relevant Equations
f(r)=N*exp{-alpha*r}
Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector

I was just wondering if the fact that we have a vector value in our equation changes anything about the solution
 
Physics news on Phys.org
kanciara said:
Homework Statement:: Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector
Relevant Equations:: f(r)=N*exp{-alpha*r}

Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector

I was just wondering if the fact that we have a vector value in our equation changes anything about the solution
Why do you think ##r## is a vector? Make sure you're not confusing vector ##\vec r## with its magnitude ##r##.
 
kanciara said:
Homework Statement:: Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector
Relevant Equations:: f(r)=N*exp{-alpha*r}

Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector

I was just wondering if the fact that we have a vector value in our equation changes anything about the solution
The argument inside the exponential needs to be a scalar, so it would have to be something like ## \alpha \cdot \textbf{r}##. It should be clear by context. I've seen ##\textbf{k} \cdot \textbf{x}## in a wavefunction but never written with a radial variable.

If it is a scalar product then you will have something like
##\int N e^{ \alpha _r r + \alpha _{ \theta } \theta + \alpha _{ \phi } \phi }## (or some such) which you should be able to separate out and integrate individually.

-Dan
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top