Normalize function - quantum chemistry

AI Thread Summary
The discussion centers on the normalization of the function f(r) = Nexp{-alpha*r}, where alpha is a positive constant and r is considered a vector. Participants clarify that the argument inside the exponential must be a scalar, implying that the equation should involve a scalar product, such as α·r. This distinction is crucial for proper integration and normalization of the function. The conversation emphasizes the need to correctly interpret vector and scalar quantities in quantum chemistry equations. Understanding these nuances is essential for accurate mathematical treatment in quantum mechanics.
kanciara
Messages
1
Reaction score
0
Homework Statement
Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector
Relevant Equations
f(r)=N*exp{-alpha*r}
Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector

I was just wondering if the fact that we have a vector value in our equation changes anything about the solution
 
Physics news on Phys.org
kanciara said:
Homework Statement:: Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector
Relevant Equations:: f(r)=N*exp{-alpha*r}

Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector

I was just wondering if the fact that we have a vector value in our equation changes anything about the solution
Why do you think ##r## is a vector? Make sure you're not confusing vector ##\vec r## with its magnitude ##r##.
 
kanciara said:
Homework Statement:: Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector
Relevant Equations:: f(r)=N*exp{-alpha*r}

Normalize function f(r) = Nexp{-alpha*r}
Where alpha is positive const and r is a vector

I was just wondering if the fact that we have a vector value in our equation changes anything about the solution
The argument inside the exponential needs to be a scalar, so it would have to be something like ## \alpha \cdot \textbf{r}##. It should be clear by context. I've seen ##\textbf{k} \cdot \textbf{x}## in a wavefunction but never written with a radial variable.

If it is a scalar product then you will have something like
##\int N e^{ \alpha _r r + \alpha _{ \theta } \theta + \alpha _{ \phi } \phi }## (or some such) which you should be able to separate out and integrate individually.

-Dan
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top