Proving Uniqueness of Complementary Solution for y(x)=y_c+y_p

  • Thread starter Thread starter mathman44
  • Start date Start date
  • Tags Tags
    Uniqueness
mathman44
Messages
204
Reaction score
0

Homework Statement



m8e4ye.jpg


The Attempt at a Solution



I can show that the complementary solution y_c solves L[y]=0 and any initial conditions for a unique choice of the c_i's, using the standard "Wronskian and invertible matrix proof". I'm stuck on this part though, how can I prove it for y(x) = y_c + y_p?
 
Physics news on Phys.org
Bump. please help :)
 
Could anyone offer a tip please? This is due tomorrow.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top