HeavyMetal
- 95
- 0
Homework Statement
[/B]
Taken straight out of Szabo and Ostlund's "Quantum Chemistry" problem 2.1:
Given a set of K orthonormal spatial functions, \{\psi_{i}^{\alpha}(\mathbf{r})\}, and another set of K orthonormal functions, \{\psi_{i}^{\beta}(\mathbf{r})\}, such that the first set is not orthogonal to the second set, i.e.,
\int d\mathbf{r}\ \psi_{i}^{\alpha*}(\mathbf{r})\psi_{j}^{\beta}(\mathbf{r}) = S_{ij}
where \mathbf{S} is an overlap matrix, show that the set \{\chi_{i}\} of 2K spin orbitals, formed by multiplying \{\psi_{i}^{\alpha}(\mathbf{r})\} by the \alpha spin function and \{\psi_{i}^{\beta}(\mathbf{r})\} by the \beta spin function, i.e.,
\left.\begin{aligned}<br /> \chi_{2i-1}(\mathbf{x}) = \psi_{i}^{\alpha}(\mathbf{r})\alpha(\omega)\\<br /> \chi_{2i}(\mathbf{x}) = \psi_{i}^{\beta}(\mathbf{r})\beta(\omega)<br /> \end{aligned}<br /> \right\}<br /> \qquad \text{i = 1, 2, ..., k}
is an orthonormal set.
Homework Equations
The above given data, and [possibly] these identities:
\int d\omega\ \alpha^*(\omega)\alpha(\omega) = \langle\alpha\|\alpha\rangle = 1
\int d\omega\ \alpha^*(\omega)\beta(\omega) = \langle\alpha\|\beta\rangle = 0
\int d\mathbf{x}\ \chi_{i}^*(\mathbf{x})\chi_{j}(\mathbf{x}) = \langle\chi_{i}\|\chi_{j}\rangle = \delta_{ij}
The Attempt at a Solution
First, I insert two 1's stealthily into the first equation to get:
\int d\mathbf{r}\ \psi_{i}^{\alpha*}(\mathbf{r})*1*1*\psi_{j}^{\beta}(\mathbf{r})\\<br /> = \int\int d\mathbf{r}\ d\omega\ \psi_{i}^{\alpha*}(\mathbf{r})\alpha^*(\omega)\alpha(\omega)\beta^*(\omega)\beta(\omega)\psi_{j}^{\beta}(\mathbf{r})
Then, I insert the definition of the spin orbitals:
\int \int d\mathbf{x}\ d\omega\ \chi_{i}^{\alpha*}(\mathbf{x}) \alpha(\omega)\beta^*(\omega) \chi_{j}^{\beta}(\mathbf{x})
I then get lost and, searching for a solution equal to a Kronecker delta, I say that it rearranges to:
\int \int d\mathbf{x}\ d\omega\ \chi_{i}^{\alpha*}(\mathbf{x})\chi_{j}^{\beta}(\mathbf{x})\alpha(\omega)\beta^*(\omega)\\<br /> = \int d\omega\ \langle\chi_{i}^{\alpha}\|\chi_{j}^{\beta}\rangle\alpha(\omega)\beta^*(\omega)\\<br /> = \int d\omega\ \delta_{ij}\ \alpha(\omega)\beta^*(\omega)\\<br /> = \delta_{ij}\ * 0
But this answer gives me zero, not just the Kronecker delta that I am searching for...
I am very new to index notation, so I am sorry if this is trivial!
As always, thanks in advance!
-HeavyMetal