jerro
- 7
- 0
Homework Statement
You have two spheres. The first is centered at the origin and as uniform positive charge density ρ and radius R. The second is shifted up a distance d, and it has uniform negative charge density -ρ and radius R.
Find the E field in the region of overlap.
Homework Equations
Gauss' Law
The Attempt at a Solution
I first found an expression for the E field inside a single sphere.
∫E dA = \frac{Q}{\epsilon}
E(4\pi*r^{2}) = \frac{\rho*(4/3)\pi*r^{3}}{\epsilon}
E=\frac{\rho*r}{3\epsilon}
Now, for extending the case to include both spheres.
I add the E field from one to the E field of the other, giving \frac{\rho*r}{3\epsilon} - \frac{\rho*r}{3\epsilon}, which gives zero.
I'm not sure that this is correct, I'm feeling weary of r, the radius of the Gaussian surface, and whether it is the same for both spheres.