Parameterizing a Cone between Z=2 and Z=3 | r(u,v) = (ucos(v), u(sin(v), u)

  • Thread starter Thread starter Lancelot59
  • Start date Start date
  • Tags Tags
    Cone
Lancelot59
Messages
640
Reaction score
1
I'm given a problem where I need to parameterize a cone, but only the segment between two planes, being z=2 and z=3.

This is what I ended up with:

r(u,v)=(ucos(v),u(sin(v),u)
u:[2,3]
v:[0,2\pi]

Is this right?
 
Last edited:
Physics news on Phys.org
Looks good.
 
Alrighty then, thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top