Matty R
- 83
- 0
Hello 
I was hoping someone could help me with this mechanics problem.
A particle of 2kg mass moves in three dimensions under the action of a force \underline{F}=6\underline{i}-6t^2 \underline{j}+(4-2t)\underline{k}.
At t=0, it is at rest with position vector \underline{r}=\underline{j}
Find the velocity and position vectors as functions of time.
\underline{F}=m \underline{a}
\underline{a}=\frac{d \underline{v}}{dt}
\underline{v}=\int(\underline{a})dt
\underline{v}=\frac{d \underline{r}}{dt}
\underline{r}=\int(\underline{v})dt
VELOCITY:
\underline{F}=m \underline{a}
\underline{a}=\frac{\underline{F}}{m}
=\frac{6\underline{i}-6t^2 \underline{j}+(4-2t)\underline{k}}{2}
=3\underline{i}-3t^2 \underline{j}+(2-t)\underline{k}
\underline{a}=\frac{d \underline{v}}{dt}
\underline{v}=\int(\underline{a})dt
=\int(3-3t^2+(2-t))dt
=(3t+c_1)\underline{i}-(t^3+c_2)\underline{j}+(2t-\frac{1}{2}t^2+c_3)\underline{k}
I don't know what to do with the constants. I keep getting them all as 0, unless that is the right thing to do.
POSITION:
\underline{v}=\frac{d \underline{r}}{dt}
\underline{r}=\int(\underline{v})dt
=\int(3t-t^3+(2t-\frac{1}{2}t^2))
=\frac{3}{2}t^2 \underline{i}-\frac{1}{4}t^4 \underline{j}+(t^2-\frac{1}{6}t^3) \underline{k}+ \underline{j}
=\frac{3}{2}t^2 \underline{i}+\frac{3}{4}t^4 \underline{j}+(t^2-\frac{1}{6}t^3) \underline{k}
I find mechanics very interesting, but I also find it quite confusing.
Could anyone help me please?

I was hoping someone could help me with this mechanics problem.
Homework Statement
A particle of 2kg mass moves in three dimensions under the action of a force \underline{F}=6\underline{i}-6t^2 \underline{j}+(4-2t)\underline{k}.
At t=0, it is at rest with position vector \underline{r}=\underline{j}
Find the velocity and position vectors as functions of time.
Homework Equations
\underline{F}=m \underline{a}
\underline{a}=\frac{d \underline{v}}{dt}
\underline{v}=\int(\underline{a})dt
\underline{v}=\frac{d \underline{r}}{dt}
\underline{r}=\int(\underline{v})dt
The Attempt at a Solution
VELOCITY:
\underline{F}=m \underline{a}
\underline{a}=\frac{\underline{F}}{m}
=\frac{6\underline{i}-6t^2 \underline{j}+(4-2t)\underline{k}}{2}
=3\underline{i}-3t^2 \underline{j}+(2-t)\underline{k}
\underline{a}=\frac{d \underline{v}}{dt}
\underline{v}=\int(\underline{a})dt
=\int(3-3t^2+(2-t))dt
=(3t+c_1)\underline{i}-(t^3+c_2)\underline{j}+(2t-\frac{1}{2}t^2+c_3)\underline{k}
I don't know what to do with the constants. I keep getting them all as 0, unless that is the right thing to do.
POSITION:
\underline{v}=\frac{d \underline{r}}{dt}
\underline{r}=\int(\underline{v})dt
=\int(3t-t^3+(2t-\frac{1}{2}t^2))
=\frac{3}{2}t^2 \underline{i}-\frac{1}{4}t^4 \underline{j}+(t^2-\frac{1}{6}t^3) \underline{k}+ \underline{j}
=\frac{3}{2}t^2 \underline{i}+\frac{3}{4}t^4 \underline{j}+(t^2-\frac{1}{6}t^3) \underline{k}
I find mechanics very interesting, but I also find it quite confusing.
Could anyone help me please?
