PDE: Heated Sphere Homework Solution

  • Thread starter Thread starter skrat
  • Start date Start date
  • Tags Tags
    Pde Sphere
skrat
Messages
740
Reaction score
8

Homework Statement


This is not really a school problem, it's actually something I am trying to figure out. So, we have a sphere with given radius. (Actually let's assume that all the parameters are known). The sphere has equally distributed heaters and is in the beginning at constant temperature. It also radiates as a black body. I would like to know the temperature as a function of radius and time.

Homework Equations

The Attempt at a Solution



So if I am not mistaken, what I have to solve is $$\frac{\partial T}{\partial t}-D\nabla ^2 T= \frac{q}{\rho c_p}$$ if ##q## is the density of the heaters. Since everything is symmetrical, the solution of homogeneous equation should like something like $$T(r,t)=(aj_0(kr)+bn_0(kr))e^{-k^2Dt}$$ where ##j_0## is spherical Bessel function and ##n_0## is spherical Neumann. Due to the nature of Neumann functions when ##r\rightarrow 0## the constant ##b=0##.

Now in order to simplify my boundary conditions, which are: $$T(r,t=0)=T_0$$ and $$-\lambda \frac{dT(r=R)}{dr}=\sigma T(R)^4$$ I decided to add a constant to my solution. Therefore the solution should look something like $$T(r,t)=aj_0(kr)e^{-k^2Dt}+T_0$$ which also changes my boundary condition to $$T(r,t=0)=T_0=aj_0(kr)+T_0$$ meaning that ##kr=\xi_n## where ##\xi_n## is n-th zero of a Bessel function.

Now I am not sure about this part above. Really not. Is everything ok so far? :/ I am not sure because my ##k## is now actually ##k(r)##. This confuses me a bit.
 
Physics news on Phys.org
In a problem like this, the first thing to do is to find the long-time steady state solution. This will then be the starting point for developing the transient solution. Furthermore, if you can't get the steady state solution, you will never be able to find the transient solution. So, follow the most important rule of modeling: Start Simple.

Chet
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top