How Do You Solve PDEs Using Polar Coordinates?

Dustinsfl
Messages
2,217
Reaction score
5
Solving a PDE with Polar coordinates

yu_x-xu_y=0

x=r\cos{\theta} \ \mbox{and} \ y=r\sin{\theta}

u(r,\theta)

Does u_x\Rightarrow u_r \ \mbox{or} \ u_{\theta} \ \mbox{and why?}

Thanks.
 
Physics news on Phys.org
Use the chain rule.

\frac{\partial u}{\partial x}= \frac{\partial r}{\partial x}\frac{\partial u}{\partial r}+ \frac{\partial \theta}{\partial x}\frac{\partial u}{\partial \theta}
and
\frac{\partial u}{\partial y}= \frac{\partial r}{\partial y}\frac{\partial u}{\partial r}+ \frac{\partial \theta}{\partial y}\frac{\partial u}{\partial \theta}


Since r= (x^2+ y^2)^{1/2},
\frac{\partial r}{\partial x}= \frac{1}{2}(x^2+ y^2)^{-1/2}(2x)
= \frac{x}{(x^2+ y^2)^{1/2}}= \frac{r cos(\theta)}{r}= cos(\theta)[/itex]<br /> and<br /> \frac{\partial r}{\partial y}= \frac{1}{3}(x^2+ y^2)^}{-1/2}(2x)<br /> = \frac{y}{(x^2+ y^2)^{1/2}}= \frac{r sin(\theta)}{r}= sin(\theta)[/itex]&lt;br /&gt; &lt;br /&gt; Since \theta= tan^{-1}(y/x)&lt;br /&gt; \frac{\partial \theta}{\partial x}= \frac{1}{1+\frac{y^2}{x^2}}\left(-\frac{y}{x^2}\right)&lt;br /&gt; = -\frac{y}{x^2+ y^2}= -\frac{r sin(\theta)}{r^2}= -\frac{1}{r}sin(\theta)&lt;br /&gt; and&lt;br /&gt; \frac{\partial \theta}{\partial y}= \frac{1}{1+ \frac{y^2}{x^2}}\left(\frac{1}{x}\right)&lt;br /&gt; = \frac{x}{x^2+ y^2}= \frac{r cos(\theta)}{r^2}= \frac{1}{r}cos(\theta)[/itex]
 
Thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top