Pendulum and Simple Harmonic Motion Problems

AI Thread Summary
The discussion revolves around solving problems related to pendulums and simple harmonic motion. The first problem involves calculating the acceleration due to gravity on planet X using the pendulum's frequency and length, leading to a derived value of 36.70 m/s². The second problem correctly applies the formula for the period of a mass on a spring, yielding a period of approximately 44.43 seconds, emphasizing the need to convert grams to kilograms. The third problem focuses on finding the spring constant using the number of vibrations and time, with participants discussing the rearrangement of formulas for clarity. Overall, the conversation highlights the importance of understanding the relationships between mass, spring constant, and motion in simple harmonic systems.
think4432
Messages
62
Reaction score
0
1. Determine the value of the acceleration due to gravity on planet X if a pendulum having a length of 30.0 cm has a frequency of .70 hz on that planet?

2. Find the period of motion for a 200 gram mass vibrating on a spring having a spring constant of 4.0 n/m?

3. When a mass of 35.0 grams is attached to a certain spring, it makes 20 complete vibrations in 4.80 seconds. What is the spring constant for this spring?


equations: SHM: T=2pi sqr(m/k)


1. i have no idea...really
2. t=2pi sqr(200g/4 n/m) = 44.4288
3. k=4pi^2m/t^2
k=4pi^2(35g)/(4.1s)^2 [t=4.1s]
k=82.19 N/M


I don't understand the spring constant equation.

Please help?
 
Physics news on Phys.org
1) You know that the period of a pendulum is
T = 2\pi \sqrt{\frac{l}{g}}

and that f= \frac{1}{T}

2)Should be correct since you are using the correct formula

3) The periodic time, T is the time taken for one vibration.

20 vibrations occur in 4.8 s
1 vibration will occur in how much time?

Now use the equation T=2pi sqr(m/k) and rearrange it to get k
 
Ohh! Ok! I understand number 2, and 3.

But number 1 is still a little confusing.

So, T=2pi sqrt(L/a)
Frequency, f=1/T
f=(1/2pi)sqrt(a/L)

solve for a?

a=(1/4pi^2)L/T^2
(1/4pi^2)(30cm)/1.42^2

a=36.70 m/s^2 ?



and one more problem:
A 70.0 gram mass is hung from a vertical spring causing it to stretch 20.0 cm. Find the period of motion for this system when the 70.0 gram mass is replaced by a 90.0 gram mass and set into simple harmonic motion.

how would i set that up?

thanks for the help on the other 2 problems! :]
 
think4432 said:
Ohh! Ok! I understand number 2, and 3.

But number 1 is still a little confusing.

So, T=2pi sqrt(L/a)
Frequency, f=1/T
f=(1/2pi)sqrt(a/L)

solve for a?

a=(1/4pi^2)L/T^2
(1/4pi^2)(30cm)/1.42^2

a=36.70 m/s^2 ?
Yes solve for a. But recheck your rearranging of terms.

f = 1/2pi sqrt(a/l)
f2= (1/4pi2)(a/l)

think4432 said:
and one more problem:
A 70.0 gram mass is hung from a vertical spring causing it to stretch 20.0 cm. Find the period of motion for this system when the 70.0 gram mass is replaced by a 90.0 gram mass and set into simple harmonic motion.

how would i set that up?

When you placed the 70g mass (the weight causes it to stretch) on the spring it stretched by 20 cm, as it said right?
Remember Hooke's law? You can now find the spring constant,k.

When you have k, to find the period when the mass is 90grams just use the formula you stated above:

T= 2\pi \sqrt{\frac{m}{k}}
 
thank you so much!

great help!

now i might pass the test tommorow!

thanks again!
 
think4432 said:
2. t=2pi sqr(200g/4 n/m) = 44.4288

! 200g=.2kg! ALWAYS CONVERT, you CANNOT multiply grams by meters it WONT WORK!
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top