skrat said:
So for first body:
##-\ddot{\varphi _1}+\varphi _1(\frac{g}{l}+\frac{k}{m})+\varphi _2\frac{k}{m}=0##
and second:
##-\ddot{\varphi _2}+\varphi _2(\frac{g}{l}+\frac{k}{m})+\varphi _1\frac{k}{m}=0##
This gives me a system : ##\begin{bmatrix}
\ddot{\varphi _1}\\
\ddot{\varphi _2}
\end{bmatrix}=\begin{bmatrix}
\frac{g}{l}+\frac{k}{m} &\frac{k}{m}\\
\frac{g}{l}+\frac{k}{m} & \frac{k}{m}
\end{bmatrix}\begin{bmatrix}
\varphi _1\\
\varphi _2
\end{bmatrix}##
I made I mistake here... my system is ##\begin{bmatrix}
\ddot{\varphi _1}\\
\ddot{\varphi _2}
\end{bmatrix}=\begin{bmatrix}
\frac{g}{l}+\frac{k}{m} & \frac{k}{m}\\
\frac{k}{m}& \frac{g}{l}+\frac{k}{m}
\end{bmatrix}\begin{bmatrix}
\varphi _1\\
\varphi _2
\end{bmatrix}##
If ##\alpha = \frac{g}{l}+\frac{k}{m}## and ##\beta = \frac{k}{m}##. We can see that the matrix is symmetrical ##\begin{bmatrix}
\alpha & \beta\\
\beta& \alpha
\end{bmatrix}##
The eigen values are ##(\alpha -\lambda) ^2-\beta ^2=\lambda ^2-2\alpha \lambda +(\alpha ^2-\beta ^2)## which gives me ## \lambda _{1,2}=\alpha \pm \beta ##.
Accordingly, eigenvector for ## \lambda _{1}=\alpha + \beta ## is ##v_1=(1,1)## and for ## \lambda _{2}=\alpha - \beta ## a vector ##v_2=(-1,1)##
This means, that matrix D from eigenvalues is ##D=\begin{bmatrix}
\alpha +\beta &0 \\
0& \alpha -\beta
\end{bmatrix}## and matrix P (from eigenvectors) is ##P=\begin{bmatrix}
1&-1 \\
1& 1
\end{bmatrix}##.
The general solution should be like ##\begin{bmatrix}
\varphi _1\\
\varphi _2
\end{bmatrix}=\begin{bmatrix}
1&-1 \\
1& 1
\end{bmatrix}\begin{bmatrix}
e^{(\alpha +\beta )t} &0 \\
0& e^{(\alpha -\beta )t}
\end{bmatrix}\begin{bmatrix}
A\\
B
\end{bmatrix}##
so general solution is ##\begin{bmatrix}
\varphi _1\\
\varphi _2
\end{bmatrix}=\begin{bmatrix}
Ae^{(\alpha +\beta )t}-Be^{(\alpha -\beta )t}\\
Ae^{(\alpha +\beta )t}+Be^{(\alpha -\beta )t}
\end{bmatrix}##
Anything more I can do with that? That is, if it is not wrong again...
haruspex said:
The system would have constant energy. You should have periodic trig functions in the answer, not exponentials. Probably a sign error.
Ok. How on can I check if the energy is constant? One more, since I have exponential functions again, my result is than again not ok?
Kosomoko said:
I think the problem is still with your expression for the force from the spring. The way you wrote it, being proportional to x1+x2, that would mean that if x1 = x2, the spring would be exerting a force. That's not right; if x1 = x2, then the spring is at its equilibrium length, so there should be no force from it.
p.s. I think your term for the force from gravity also has the wrong sign.
Let this be the position at t=0. The total extensions of the spring at this point is ##x_1+x_2##.
Unless I understood you wrong, if ##x_1=x_2\neq 0## the force of the spring will not be 0, which is ok.
Gravity has the same direction as the spring.