A Phase diagram of Carbon at large electric fields.

Prathyush
Messages
211
Reaction score
16
TL;DR Summary
What are the phases of carbon at large electric fields.
I am wondering if the phase diagram of Carbon has been explored at very large electric fields.

Can one make any theoretical guesses ?

In specific I am interested in Pressure Vs Electric field and Electric field vs Temperature at fixed temperature and pressure respectively.
 
Physics news on Phys.org
What makes you think that high electric fields would make a constructive difference ?

I would be surprised if carbon could exist for long in a high electrical field gradient.
As graphite it would conduct current and get hot due to W = I²R.
Any contamination of diamond would make it a semiconductor or resistor with a similar fate.
Carbon nanotubes or Fullerenes would probably not survive at high pressure.
 
Baluncore said:
What makes you think that high electric fields would make a constructive difference ?
I am at a very early stage of exploring this (and similar) questions. But my interest in this problem is to see if we can transition between conducting and resistive phases of carbon(or other material) by controlling electric fields.

My suspicion is that low resistance phase is unfavoured, and it will selectively crystalize into high resistance phase to minimize heat generated.

Baluncore said:
As graphite it would conduct current and get hot due to W = I²R.
At sufficiently high pressure, my guess is that carbon will melt and begin start a crystallization process into forming a diamond. This is indeed a non-equilibrium problem because of heat flow is involved. But I am imagining heat is being steadily pumped out of the system using some cooling mechanism to lower temperature.
 
Last edited:
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top