Phonon density of states and density of states of free electrons

chikchok
Messages
7
Reaction score
0
Homework Statement
Compare phonon DOS and DOS of free electrons in 1D and 2D
Relevant Equations
D(E)1d=(1/L)dN/dE
D(E)2d=1/A)dN/dE for electrons
In the following pdf I tried to calculate the density of states of free electrons and phonons. First, I found the free electron DOS in 1D, it turns to be proportional to (energy)^(-1/2) and in 2D it is constant. However, I am not sure I found the DOS for phonons in the second part of the solution. Because the homework said to compare two DOS, I thought phonon DOS needs to be in terms of energy D(E) and not frequency w D(w). But I suspect it is wrong. Can phonon density of states be in terms of energy? If so, how to find it? And if not, should I find it trough equation D(w)dw?
 

Attachments

Physics news on Phys.org
This is a pretty broad question and I would suggest looking at Kittel or Ashcroft and Mermin for the phonon part. I believe the question wants you to see that the dispersion relation for phonons can resemble that of photons. There is a lot of good physics in this question and it is worth some effort.
 
I`ve looked up the DOS of a phonon in Kittel`s book and in 1D DOS is 1/pi*vg (vg as a group velocity dw/dk) and in 2D it`s k/2pivg . Both of them have no relationship with energy. That is why I was wondering if there is a way to calculate the DOS as a function of energy.
 
$$E=\hbar \omega$$
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top