Physics HW- Falling Bodies, Part 3

AI Thread Summary
The discussion centers on a physics homework problem involving a moon rock thrown upwards on the moon, where gravity is weaker than on Earth. The initial velocity of the rock was calculated to be approximately 11.9 m/s, but there was confusion regarding the correct application of kinematic equations, particularly concerning the signs and the inclusion of initial velocity. Participants clarified that the correct kinematic equation should account for the initial velocity and that the total flight time can be derived from the time to rise and fall. The conversation emphasized the importance of careful calculations and understanding the relationships between the variables involved in projectile motion. Overall, the discussion provided valuable insights into solving problems related to falling bodies under different gravitational conditions.
  • #51
Medgirl314 said:
It's not an online test, it's just a homework set, but my physics teacher usually assumes we'll round instead of leaving answers as a square root, as far as I know.This problem could be different. He hasn't explained surds yet, or gotten into leaving answers as square roots, so that may be where some of the confusion is coming from. Would you mind clarifying what equation I need to use at this point?
CAF123's point is that if you evaluate some variable as a number, then use that number in further calculations, then any rounding error gets carried into the second calculation. Sometimes this can result in a much bigger error in the final answer than you might expect. It's almost always best to keep the algebraic form as long as you can along the path to each result. Sometimes you get some cancellation.
'surd' means any irreducible expression involving an Nth root. It comes from the Latin surdus (deaf), which is also the origin of 'absurd'. It's like calling something 'dumb'.
 
Physics news on Phys.org
  • #52
Oh! I thought that the final answer would have to be left as a square root. Thanks for the explanation, that's neat! I expected the word was Latin, but wasn't sure for what.
 
  • #53
I'm sorry, I thought I replied to this. I have to admit, I have gotten a little lost with this problem. Would someone please help me with beginning the next step? Am I suppossed to begin the problem again with an unrounded answer? If so, what equation should I use? Should I leave my inital velocity answer the same for that part of the problem? Thanks so much! :-)
 
  • #54
Could I use vavg=distance/time, but using my unrounded answer for velocity?
 
  • #55
That seems to yield an answer of approximately .27 seconds, which seems far more plausiable than my original answer.
 
  • #56
Medgirl314 said:
That seems to yield an answer of approximately .27 seconds, which seems far more plausiable than my original answer.
No, that's much too low. Pls post your working for that.
Most of this thread has been about finding the launch speed (plus a few rabbit holes). For the time, you almost nailed it in your OP. You just forgot to take the square root.
 
  • #57
Okay, thank you! Thanks!

I used this formula: vavg=distance/time,

Plugged in my numbers:11.86591758=44/t
And got about .27.

The square root of 55 is approximately 7.42. Is that the answer?
 
  • #58
Medgirl314 said:
I used this formula: vavg=distance/time,

Plugged in my numbers:11.86591758=44/t
And got about .27.
Two problems there. The average speed is only half the launch speed, so 5.9329587897.
You seem to have divided the wrong way: you want t = 44/average speed. Correcting these will give you the same number as below.
The square root of 55 is approximately 7.42. Is that the answer?
Not quite. What time do you think you have calculated here? What time does it ask for?
 
  • #59
It asks for the total time, and that time is just how long it would take to go up. So the answer would be more like 14.84 seconds.
 
  • #60
Medgirl314 said:
It asks for the total time, and that time is just how long it would take to go up. So the answer would be more like 14.84 seconds.

Exactly.
 
  • #61
Great, thank you!
 
Back
Top