Physics project confusion (effects of length on a pendulum)

Click For Summary
The discussion revolves around designing a physics project to study centripetal acceleration using a pendulum and motion sensor while varying the pendulum's length. The professor suggests incorporating a force sensor, which raises questions about its necessity since the primary focus is on measuring velocity. Participants highlight the importance of considering both centripetal acceleration and gravitational force in the experiment. Clarifications are sought regarding the specifics of the force measurement and the experimental setup, including the height or angle of the pendulum bob. Overall, the project aims to explore the relationship between pendulum length and centripetal acceleration, potentially expanding beyond initial expectations.
dpatil
Messages
1
Reaction score
0
Homework Statement
We are seeking to study the effects of length (or radius) of a pendulum on the centripetal acceleration.
Relevant Equations
Centripetal Acceleration= velocity^2/r
We are seeking to design a project where we use a simple pendulum and a motion sensor (that will give us velocity) in order to study centripetal acceleration by essentially changing the length of the pendulum for each trial. This felt simple enough, however our professor insists that we would also need a force sensor in order to do the experiment. I cannot understand why we would need force if all we are doing is swinging a pendulum through a motion sensor to study velocity^2/r where r is the length of the pendulum. How would force help us in this situation?
 
Physics news on Phys.org
Welcome, @dpatil ! :smile:

He may want to relate force or tension in the string (centripetal acceleration x mass of the pendulum) to the changes in the length of the pendulum.

Acceleration of gravity (always vertical) on the pendulum needs to be considered as well in combination with the centripetal acceleration (always radial).
 
Welcome to PF.

dpatil said:
How would force help us in this situation?
What are your thoughts so far on this? Did the professor say where they wanted the force(s) measured? Did they suggest a 1-D or 2-D force sensor?
 
Last edited:
This doesn't have to do with the force measurement, but are you planning on raising the bob to the same height or the same angle? What are the expected results for ##\frac{v^2}{R}## at the lowest point of the swing in either case? That might be something to try and figure out and attempt to verify via measurement.
 
You say you don’t need a force sensor. Ok. Please post the description of the task as given to you and the experimental procedure you propose to follow. Then we will be in a better position to ascertain whether a force sensor is appropriate to use and how.
 
  • Like
Likes phinds and erobz
This is actually a very nice idea for an experiment that can go beyond "seeking to study the effects of length (or radius) of a pendulum on the centripetal acceleration." I will not say anything more lest I spoil it for someone.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K