yungman
- 5,741
- 294
Homework Statement
Evaluate
\int_{\Gamma} x\frac{\partial}{\partial n} G(x,y,\frac{1}{2}, \frac{1}{3}) ds
On a unit disk region \Omega[/tex] with positive oriented boundary \Gamma<br /> <br /> <h2>Homework Equations</h2><br /> <br /> u(x_0, y_0) = \frac{1}{2\pi}\int_{\Gamma} ( u\frac{\partial v}{\partial n} - v\frac{\partial u}{\partial n}) ds<br /> <br /> u(x_0, y_0) = \frac{1}{2\pi}\int_{\Gamma} [ u\frac{\partial }{\partial n} G(x,y,x_0,y_0)] ds<br /> <br /> In this case u= x \Rightarrow \nabla^2 u = 0 which means u is harmonic in \Omega[/tex]<br /> <br /> G=v + h \hbox { where }\; v=\frac{1}{2}ln[(x-x_0)^2 + (y-y_0)^2] = ln|r|<br /> <br /> h = -v \hbox { on }\; \Gamma \hbox { and h is harmonic in } \Omega<br /> <br /> Since v is not harmonic in \Omega [/tex] because v\rightarrow -\infty \hbox { as } (x,y) \rightarrow (x_0,y_0). This mean G is not harmonic.&lt;br /&gt; &lt;br /&gt; &lt;h2&gt;The Attempt at a Solution&lt;/h2&gt;&lt;br /&gt; &lt;br /&gt; I have no idea how to approach this and no idea how to find G. Please help.&lt;br /&gt; &lt;br /&gt; Thanks&lt;br /&gt; &lt;br /&gt; Alan