complexnumber
- 61
- 0
Homework Statement
Define the sequence \displaystyle f_n : [0,\infty) \to<br /> \left[0,\frac{\pi}{2}\right) by f_n(x) := \tan^{-1}(nx), x \geq<br /> 0.
Homework Equations
Prove that f_n converges pointwise, but not uniformly on
[0,\infty).
Prove that f_n converges uniformly on [t, \infty) for t ><br /> 0.
The Attempt at a Solution
\displaystyle \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty}<br /> \tan^{-1} (nx) = 0 for x = 0.
\displaystyle \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty}<br /> \tan^{-1} (nx) = \frac{\pi}{2} for x \in (0, \infty).
Let \displaystyle f : [0, \infty) \to \left[0, \frac{\pi}{2}<br /> \right) be defined by
<br /> \begin{align*}<br /> f(x) = \left\{<br /> \begin{array}{ll}<br /> 0 & \text{ if } x = 0 \\<br /> \dfrac{\pi}{2} & \text{ if } x > 0<br /> \end{array}<br /> \right.<br /> \end{align*}<br />
Therefore f_n converges pointwise to f.
Is function f correct? How can I prove the rest?