Potential difference of spherical rain drops

chanella35
Messages
11
Reaction score
0
I absolutely have no idea how to answer this question. If someone could please explain to me what concept this question is trying to test and how to go about answering this question it would be immensely appreciated :)

THE QUESTION:

Two equal spherical rain-drops are both at a potential V. If they
coalesce into a single spherical drops, what will be its potential ?
 
Physics news on Phys.org
Hint: calculate the capacitance of the drops and the charge on each, given V. Then put them together and go backwards from charge to find V'.
 
marcusl said:
Hint: calculate the capacitance of the drops and the charge on each, given V. Then put them together and go backwards from charge to find V'.

but how do i calculate anything when i wasnt given any values of variables in the question?
 
I think this question is quite tricky. It's hard to say it's gravitational potential or electric potential. We need a bit of analysis:

Rain is usually not pure water, i.e. it's electrically conducting. From the time the rain drop is formed to the time it falls through a long distance, it accumulates an amount of charges due to "rubbing" with the surrounding. So, we can view the rain drop as a conducting charged sphere. Assume that V is electric potential and the rain drop can be treated as isolated (so that V is due to ONLY the rain drop itself, no external effect by other rain drops). Let Q and R denote the charge and the radius of the rain drop. You can calculate V in term of Q and R, can't you? :wink:

Then when 2 identical rain drops coalesce, it forms a bigger rain drop of charge 2Q. The radius of the new rain drop can be calculated (the total volume is conserved). Again, the electric potential of this new rain drop V' can be calculated in term of Q and R, as it's an isolated conducting spherical rain drop. Finally find the ratio of V' and V, and thus, express V' in term of V.

So what if V is gravitational potential? My best guess is, it's quite pointless or way too easy if so. For 2 identical rain drops to coalesce, they must be at the same height. The newly formed rain drop should be at that height as well, and thus, its potential is 2V (as mass is doubled). Too obvious! I have just only considered the gravitational potential due to the gravitational field of the Earth. But taking into account the gravitational potential due to gravitational field of the rain drop itself is again quite pointless, and more importantly, impossible to lead to a uniform potential at every point in the rain drop.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top