Power series to solve 2nd order ordinary differential equations

hbomb
Messages
57
Reaction score
0
I need some help with power series.
I can't remember how to find a power series center around a point.
example question:
y"-xy'-y=0, x=1
I don't how to start this.
 
Physics news on Phys.org
hbomb said:
I need some help with power series.
I can't remember how to find a power series center around a point.
example question:
y"-xy'-y=0, x=1
I don't how to start this.

You should find this link useful: http://tutorial.math.lamar.edu/AllBrowsers/3401/SeriesSolutions.asp" .
 
Last edited by a moderator:
Yes, thanks. The site has been helpful, but I have a question that I couldn't find an answer for. What happens if you have a summation with the starting index of the summation with n=0 but one of the summations you have an index of n=1. All the exponents are the same.

Also what happens if instead x=1?
 
If you start at n =1, you subtract 1 from the exponent. So:

\sum_{n=0}^{k} x^{n} = \sum_{n=1}^{k}x^{n-1}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top