Poynting Vector - Finding stored energy per unit length of a solenoid

physicsoxford
Messages
4
Reaction score
0

Homework Statement



long solenoid of n turns per unit length is wound upon a cylindrical core of radius a
and relative permeability. The current I through the solenoid is increasing with time t at a
constant rate. Obtain expression for the rate of increase of stored energy per unit length in the core
of the solenoid
(a) from the inductance per unit length of the solenoid, and dI=dt.
(b) from the energy associated with the fields internal to the solenoid core.
(c) by integration of the Poynting vector over an appropriate surface.

Homework Equations



None are given but I believe this is what should be considered:

-∂/∂t ∫[ εE2/2 + B2/2μ ] dv = ∫ Jf dot E dv + ∫ E cross H da

Ampere's Law

E cross H = S

The Attempt at a Solution



Using Ampere's Law: B=μnI

L = flux/I
L = μn2lA Where l is some length and A is a surface


Part A)

∅ = L dI/dt

∅ = μn2lA dI/dt

U = Q∅/2

U/dt = μn2lA (dI/dt) (Q/dt) (1/2)

U/dt = μn2lA (dI/dt) I (1/2)

This just does not seem right to me??

Part B)

U = ∫B2/2μ dv

U = ∫(μnI)2/2μ dv

U = μn2lAI (1/2)

U/dt = μn2lA (dI/dt) I (1/2)

Part C)

U = ∫ S dv

where S = E cross H, assuming ∫ Jf dot E dv = 0

This is where I am confused. Is there an electric field in the solenoid? If so then did I not do the other parts correctly? What am I missing here...
 
Physics news on Phys.org
Not that complicated. Given inductance L, what is the formula for stored energy?

Then, calculate L per unit length.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top