Pressure drop across a thick orifice

AI Thread Summary
To calculate the pressure drop across a thick orifice with a 1-inch to 0.5-inch diameter transition, the flow rate of water is crucial, with an example given of 2 gallons per minute. The discussion highlights the need to analyze the pressure drop in three regions: before, within, and after the orifice. Calculations suggest a total pressure drop of 0.088 psi, but accuracy depends on the flow conditions and dimensions used. Friction loss factors for sudden contractions and expansions are provided, emphasizing the importance of considering flow development and shear forces. Understanding these dynamics is essential for precise pressure drop calculations in fluid systems.
nlis12
Messages
32
Reaction score
3
Greetings,

I am trying to understand how to setup/solve for the pressure drop across an orifice L=3.5in

The pipe diameter starts at 1in, then abruptly decreases to 0.5in for the length of the orifice, and abruptly transitions to 1in diameter. (See the attached file for an illustration.)

Assuming I know the flow rate of the water, how can I solve for the pressure drop across this orifice?

Any information is appreciated!
Thanks!
 

Attachments

  • Illustration of flow.PNG
    Illustration of flow.PNG
    1.7 KB · Views: 753
Engineering news on Phys.org
How accurate does the answer have to be? What is the water flow rate?
 
  • Like
Likes nlis12
jrmichler said:
Start by applying the results of your earlier post: https://www.physicsforums.com/threads/pressure-drop-across-a-change-in-diameter.942158/. Show your calculations, add some dimensions, then ask again. Note that the dimensions (more correctly ratios) do make a difference in this particular case.

Here is my work. I assumed 3 regions. 1=before the orifice 2=in the orifice 3=after the orifice.
The fluid is water.
I broke the problem up into 2 parts.
Part 1: Transition between region 1 and 2
Part 2: Transition between 2 and 3.

I chose diameter of 1in in regions 1 and 3 and a diameter of 0.5in in region 2...
I also chose an input flow rate of 2gal/min in region 1.

I calculated a pressure drop of 0.044psi for both of the halfs of the problem. Totaling 0.088psi across the orifice. (does this seem correct?)
Also, how can I account for the length of the orifice in my problem?

Thanks!

Flow1.JPG
Flow2.JPG
 

Attachments

  • Flow1.JPG
    Flow1.JPG
    22.8 KB · Views: 768
  • Flow2.JPG
    Flow2.JPG
    22.4 KB · Views: 724
Chestermiller said:
How accurate does the answer have to be? What is the water flow rate?

You get to choose the flow rate/velocity and the dimensions of the problem are set for you.
I chose 2gal/min as a nominal value.
I'd like to solve the problem as accurately and precisely as possible.

Thanks!
 
Bird, Stewart, and Lightfoot, Transport Phenomena, give the friction losses for different types of changes in cross sectional area in the form:
$$\Delta p=\frac{1}{2}\rho v^2 e_v$$where v is the downstream velocity and ##e_v## the "friction loss factor." For a sudden contraction, they recommend $$e_v=0.45(1-\beta)$$and, for a sudden expansion, $$e_v=\left(\frac{1}{\beta}-1\right)^2$$where ##\beta## is the smaller cross sectional area divided by the larger cross sectional area.

In the straight section, the L/D is 7, so the flow should not be fully developed. Still, for a lower bound, I would use the pressure drop for fully developed flow in a pipe of this diameter, and for an upper bound, I would use the pressure drop equivalent to the shear force at the wall in the hydrodynamic entrance region (i.e., essentially flow over a flat plate with the same free stream velocity as the mean flow velocity).
 
  • Like
Likes nlis12
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top