Probability: Sums and Products of Random Variables

dizzle1518
Messages
17
Reaction score
0

Homework Statement


Suppose that X is uniformly distributed on (0,2), Y is uniformly distributed on (0,3), and X and Y are independent. Determine the distribution functions for the following random variables:

a)X-Y
b)XY
c)X/Y

The Attempt at a Solution



ok so we know the density fx=1/2 and fy=1/3. Since they are independent then fxy(xy)=(1/2)*1/3)=1/6. So we will integrate 1/6 over the rectangle with y (height) 3 and x (width) 2. for a) we have P(X-Y<=Z) = P(X-Z<=Y). This is were I get stuck. I am not sure what my limits of integration are. I know that X-Y can be no less than -3 (0-3). and no more than 2 (2-0). How do I go about finding the limits of integration? Same thing with b and c. For example b yield P(XY<=Z) which is equal to P(Z/X<=Y). So that would be the area of the rectangle under the hyperbola Z/X.
 
Physics news on Phys.org
Your first integral will be \int_{\{x-y\leq z\}}{f_X(x)f_Y(y)dxdy}. Now, try to determine what values x and y can take on (hint: draw a picture!)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top