Problem on thermodynamics first law again

AI Thread Summary
The discussion revolves around calculating thermodynamic properties for a system of 2.0 mol of CO2 undergoing adiabatic and reversible expansion against a constant pressure. The initial calculations for work done (W) and internal energy change (ΔU) were incorrect due to misunderstanding the conditions of reversible expansion, which requires an infinitesimal pressure difference. It was clarified that the significant pressure difference means the process is dynamic rather than quasistatic, affecting the energy distribution between the gas and the piston. Participants emphasized the need to use the internal pressure of the gas and the relationship between pressure and volume in adiabatic conditions for accurate calculations. The conversation concluded with a focus on determining the change in temperature after the expansion using the appropriate thermodynamic equations.
ky92
Messages
14
Reaction score
0

Homework Statement


Consider a system consisting of 2.0 mol CO2 (assumed to be a perfect gas) at 298K confined to a cylinder of cross-section 10cm^2 at 10 atm. The gas is allowed to expand adiabatically and reversibly against a constant pressure of 1 atm. Calculate W, Q, ΔU, ΔH, and ΔT when the piston has moved 200cm.

(Ans: W=-1.6KJ, Q=0, ΔU=-1.6KJ, ΔT=-28, ΔH=-2.1KJ)

Homework Equations


The thermodynamics equations


The Attempt at a Solution


as it is adiabatic, Q=0.
ΔV=0.001m(0.2m)=2x10^-4 m3
W=-PexΔV=-101325(2x10^-4)=-20.27 J
ΔU=W+Q=-20.27 J

and i found that my W and ΔU are wrong
what's wrong with my answer?

should Pgas=Pex if the system is in equilibrium?
i just found that it isn't
but in my book :
"To achieve reversible expansion we must match Pex to P at each state: dw=-Pex dV=-P dV"

i am so confused.
please help!
 
Physics news on Phys.org
Calculate the work done by the gas on the piston:

W_{\text{on piston}} = \int_0^{l_f} P*A \,dl

The work done on the gas is just the additive inverse of the work done by the gas. The piston moves 200 cm, given. The area is a constant, so you essentially need to integrate P*dl. The process is adiabatic. What is the relation between pressure and volume for an adiabatic process? (Hint: You need to use the fact that the gas is CO2.)
 
ky92 said:

Homework Statement


Consider a system consisting of 2.0 mol CO2 (assumed to be a perfect gas) at 298K confined to a cylinder of cross-section 10cm^2 at 10 atm. The gas is allowed to expand adiabatically and reversibly against a constant pressure of 1 atm. Calculate W, Q, ΔU, ΔH, and ΔT when the piston has moved 200cm.

(Ans: W=-1.6KJ, Q=0, ΔU=-1.6KJ, ΔT=-28, ΔH=-2.1KJ)
You make a good point. The problem is with the question. The gas can expand adiabatically but not reversibly. In order for it to be a reversible expansion, there has to be an infinitessimal pressure difference.

In this case there is a significant pressure difference. So what happens here is that some of the energy in the gas does work on the atmosphere and some does work on the piston. The work done on the piston means the piston acquires kinetic energy (or a combination of kinetic and gravitational potential energy if it is not horizontal). So it is a dynamic rather than a quasistatic or reversible process.

In order to calculate that the work that the gas does on the atmosphere and piston, use the internal pressure of the gas. As DH says, you have to use the relationship between P and V in an adiabatic process (adiabatic condition). Express P as a function of V and then as a function of A and length.

AM
 
for an adiabatic process, Q=0,
ΔU=w+0=w
w=ΔU=CvΔT...

that's all i can think of

i have no idea lol
 
Andrew Mason said:
You make a good point. The problem is with the question. The gas can expand adiabatically but not reversibly. In order for it to be a reversible expansion, there has to be an infinitessimal pressure difference.

In this case there is a significant pressure difference. So what happens here is that some of the energy in the gas does work on the atmosphere and some does work on the piston. The work done on the piston means the piston acquires kinetic energy (or a combination of kinetic and gravitational potential energy if it is not horizontal). So it is a dynamic rather than a quasistatic or reversible process.

In order to calculate that the work that the gas does on the atmosphere and piston, use the internal pressure of the gas. As DH says, you have to use the relationship between P and V in an adiabatic process (adiabatic condition). Express P as a function of V and then as a function of A and length.

AM
thank you!
let me think about it...
 
ky92 said:
for an adiabatic process, Q=0,
ΔU=w+0=w
w=ΔU=CvΔT...

that's all i can think of

i have no idea lol
But you also know that

PV^{\gamma} = P_0V_0^{\gamma} = K

Since PV = nRT, P = nRT/V, so

TV^{\gamma-1} = K/nR

which is also constant, ie TV^{\gamma-1} = T_0V_0^{\gamma-1}

So work out the change in T after an adiabatic expansion of 200 cm (you have to first determine the initial volume and the expanded volume) using this expression. (What is the \gamma for CO2?)

AM
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top