Projectile Motion - vertical displacement at specific time.

AI Thread Summary
The discussion focuses on calculating the height of a kicked football at a specific distance using projectile motion equations. The kicker sets the ball 30 yards away and kicks it at a 45-degree angle with a speed of 27 m/s. Initial calculations yield a height of 17.1 m, which does not match the book's answer of 17.7 m. Participants suggest that discrepancies may arise from unit conversions and rounding errors, recommending recalculating with different units to achieve a closer result. The conversation emphasizes the importance of maintaining precision in calculations to minimize error accumulation in multi-step problems.
wheels94
Messages
2
Reaction score
0

Homework Statement


A kicker wishes to kick a field goal, so he sets the ball on the ground 30 yards (27m) from the goal. Assuming he kicks the ball at an angle of 45 degrees and a speed of 27m/s, what is the height of the ball above the ground when it goes over the crossbar.

Known:
R = 27m
Vo = 27ms
theta = 45

Unknown:
t:
Vox:
Voy:
Sy:

Homework Equations


Vox = Vo *cos(theta)
Voy = Vo *sin(theta)
R = Vox*t
Sy = Voy*t+.5*a*(t)^2

The Attempt at a Solution



Step 1: Find Vox:

Vox = Vo *cos(theta)
Vox = 27 *cos(45)
Vox = 19.1m/s

Step 2: Find t:

R = Vox*t
27 = 19.1*t
t = 27/19.1
t = 1.4s

Step 3: Find Voy:

Voy = Vo *sin(theta)
Voy = 27 *sin(45)
Voy = 19.1m/s

Step 4: Find Sy:

Sy = Voy*t+.5*a*(t)^2
Sy = 19.1*1.4 + .5(-9.8)(1.4)^2
Sy = 26.7-9.6
Sy = 17.1m

However, this is not the answer in the back of this book (Practice Makes Perfect Physics by Connie J Wells). The answers given are t=1.4s and h (which I've so far assumed is Sy)= 17.7m

I've only recently started brushing up on my physics over the last year as prep for University, so I'm fully expecting there to be an error here somewhere, but I've already come across one error in this book, is this possibly another one?
 
Physics news on Phys.org
Your method and calculations look fine. The dual units specified for the distance leads me to suspect that the author originally did the problem in one set of units and simply converted a few values to make it "politically correct" for a metric audience; That's just sloppy and lazy in my opinion.

Redo your calculations with the distance being 30 yards, the speed 90 ft/sec and the acceleration due to gravity 32 ft/sec2. The resulting height calculation should convert very closely to 17.7 m.
 
gneill said:
Your method and calculations look fine. The dual units specified for the distance leads me to suspect that the author originally did the problem in one set of units and simply converted a few values to make it "politically correct" for a metric audience; That's just sloppy and lazy in my opinion.

Redo your calculations with the distance being 30 yards, the speed 90 ft/sec and the acceleration due to gravity 32 ft/sec2. The resulting height calculation should convert very closely to 17.7 m.

Comes out at 17.6m, which seems to be as close as I'll be getting on this one. Annoying that the book has some screwy answers, but as long as it's teaching me the correct method it's still a win. Thanks a lot for the help! :)
 
Hi @wheels94,
There is another useful lesson or two here.
Because of the angle and numbers chosen, the final step in the height calculation is numerically sx-g. The conversions provided have a 2% error (should be 27.5, not 27). The conversion used for g (32.2 to 9.8) is rather more accurate. The subtraction is between two numbers in approximately the ratio 3:1, so the 2% error becomes a 3% error.
In your own calculation you found time and rounded it to 1.4 s, a 1% error, and used that in the next calculation. This led to an error accumulation, which again was magnified by the subtraction step.
In multistage calculations, it is better to keep everything algebraic through the transition. I.e, don't use the 1.4 as input to the next stage, just use the algebraic expression it came from. Often you will find there is cancellation (there certainly is here).
If you have to carry a numeric value through, preserve more digits than you quote for the intermediate answer. So here, you would answer the first part as 1.4 s, but use 1.414 as input to the next part.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top