Projectile: time max height reached

AI Thread Summary
The discussion revolves around calculating the time it takes for a rock thrown at an angle to reach its maximum height. The initial velocity is given as 3.13 m/s at a 30-degree angle, with the final vertical velocity at maximum height being 0 m/s and acceleration due to gravity as -9.8 m/s². The initial vertical velocity is calculated as 1.57 m/s using the sine function. The user initially arrives at a time of 0.319 seconds, while the correct answer is noted as 0.313 seconds, leading to confusion about potential errors. It is clarified that the discrepancy arises from using different values for gravitational acceleration, with the user's calculation being more precise.
Newlander
Messages
6
Reaction score
0

Homework Statement


"A boy throws a rock with an initial velocity of 3.13 m/s at 30.0 degrees above the horizontal. How long does it take for the rock to reach the maximum height of its trajectory?"

vi = 3.13 m/s
tmax height = ?
vf = 0 m/s (at max height)
a = -9.8 m/s2


Homework Equations


vf = vi + at

(Not sure!)




The Attempt at a Solution


vf = vi + at
t = [(vf - vi) / a] = [(0 m/s - 3.13 m/s)/-9.8 m/s2]
t = 0.319 s

Concern:
The correct answer is listed as 0.313 s; because my answer is so close, I wondered if this were a typo. If not, I clearly am taking the wrong approach and would appreciate some guidance.
 
Physics news on Phys.org
The ball has been thrown at an angle, and the magnitude of the initial velocity is 3.13 m/s. With what initial velocity does the ball move upward?

ehild
 
Hmmm . . . so, I should determine viy? If so, 3.13 m/s sin(30) = 1.57 m/s . . . sorry--not clear on how this will help me arrive at what's noted as the correct answer. I did plug this figure into vf2 - vi2 = 2ad, and then determined d from that . . . and then plugged that d into d = vit + 1/2at2 to determine t . . . but I ended up with the same answer, 0.319 s.
 
You have the formula vf=vi+at already. Apply it to the vertical velocity components. At the maximum height, vy=0 (not the velocity v, as the ball keeps it horizontal velocity component during the whole flight)

ehild
 
Lol, this is going to seem so simple after . . .

You used: -9.8m/s2

They used: -10m/s2

You got the correct answer under a more precise measurement.
 
Last edited:
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...

Similar threads

Back
Top