Projection onto Column Space of A and its Perpendicular

Zyxer22
Messages
16
Reaction score
0

Homework Statement



Some of the details in this question are based off the use of matlab. If it's needed I can show the matrices that MATLAB creates.


Let A = magic(8); A = A(:,1:3) and let S be the Column Space of A. For b = [1:8]' compute the projection of b onto the Column Space of A. What is the projection of b perpendicular to the Column Space of A?



Homework Equations





The Attempt at a Solution



I'm not sure exactly where to get started. My first issue is that I'm not sure how to find the column space of A. I think I'm supposed to take the reduced row echelon form of the matrix and then shrink it if necessary. My book defines Column space as the span, so this would make sense to me.

I'm also not sure how to find the perpendicular of a matrix. I know it's defined such that v \in W^\perp => v \cdot u = 0 | u \in W but I'm not sure how to go from there.
 
Physics news on Phys.org
I'm fairly sure I'm right about the column space but I could use an explanation on perpendicular matrices if anyone can help.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top