The-Mad-Lisper
- 12
- 1
Homework Statement
\sum\limits_{n=1}^{\infty}\frac{n-1}{(n+2)(n+3)}
Homework Equations
S=\sum\limits_{n=1}^{\infty}a_n (1)
\lim\limits_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}\gt 1\rightarrow S\ is\ divergent (2)
\lim\limits_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}\lt 1\rightarrow S\ is\ convergent (3)
\sum\limits_{n=1}^{\infty}\mid a_n\mid\ is\ convergent\ \land\ \mid b_n \mid\ \leq\ \mid a_n \mid\ for\ every\ n\rightarrow \sum\limits_{n=1}^{\infty}\mid b_n\mid\ is\ convergent (4)
The Attempt at a Solution
I suspect that the given series is divergent, thus the series would not be convergent. Thus I take the contrapositive of statement 4 which comes out to be \sum\limits_{n=1}^{\infty}\mid b_n\mid\ is\ divergent\ \land\ \mid b_n \mid\ \leq\ \mid a_n \mid\ for\ every\ n\rightarrow \sum\limits_{n=1}^{\infty}\mid a_n\mid\ is\ divergent.
Let a_n=\frac{n-1}{(n+2)(n+3)} and b_n = \frac{1}{n}. The statement \mid b_n \mid\ \leq\ \mid a_n is never true in the domain [1,\infty), so we cannot say that a_n is divergent. Any suggestions?