I am to prove that [tex]\log_{2} 7[/tex] is irrational. So I started by saying that what if [tex]\log_{2} 7[/tex] is rational. Then it must be in the form of [tex]\frac{m}{n}[/tex] where m and n are integers. So now [tex]\log_2 7 = \frac{m}{n}[/tex] So I took the 2^ up of each and now [tex]7 = 2^{\frac{m}{n}}[/tex] Then [tex]7 = \sqrt[n]{2^m}[/tex] But now I seem to be lost. Do I now try to prove that [tex]\sqrt[n]{2^m}[/tex] is irrational, or what do I need to do. Any ideas? Maybe proove that [tex]2^{\frac{m}{n}} \neq 7[/tex] by 2^{anything rational} must be something?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Proof: log(x) is irrational

**Physics Forums | Science Articles, Homework Help, Discussion**