Proof of a formula with two geometric random variables

Armine
Messages
2
Reaction score
0
Homework Statement
If G_1 and G_2 are independent geometric random variables with parameters p_1 and p_2 respectively, show that
Relevant Equations
P(G_1<G_2)=p_1(1-p_2)/(p_1+p_2-p_1p_2)
The image above is the problem and the image below is the solution I have tried but failed.

MVIMG_20210209_102231_recompress.jpg
1612521305080_recompress.jpg
 
Physics news on Phys.org
You first equation is multiple-counting many cases. You should sum the cases where ##G_1 = k##, not ##G_1 \le k##
 
FactChecker said:
You first equation is multiple-counting many cases. You should sum the cases where ##G_1 = k##, not ##G_1 \le k##
Get it, thank you very much!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top