Jennifer Lyn
- 5
- 0
I've been working on this proof, and I just can't get it backwards or forwards, so I must be going about it wrong or missing something. I'm on a re-do for the homework, because my first attempt was completely wrong, so here I go with the second.
Any guidance would be appreciated.
The relationship between pressure and volume of an ideal gas is expressed as pv=constant in a reversable isothermal condition. Show that the relationship between pressure and volume of the same gas is expressed as pV^gamma=constant in a reversible adiabatic condition where gamma=Cp,m/Cv,m.
gamma=Cp,m/Cv,m.
pV^gamma=constant, rev. adiabatic
pv=constant, rev. ideal
p1v1^(Cpm/Cvm)=p2v2^(Cpm/Cvm) take ln and mult both sides by the Cvm/Cpm
ln p1v1 = ln p2v2 e to both sides
p1v1=p2v2
p1v1/p2v2 = 1
Any guidance would be appreciated.
Homework Statement
The relationship between pressure and volume of an ideal gas is expressed as pv=constant in a reversable isothermal condition. Show that the relationship between pressure and volume of the same gas is expressed as pV^gamma=constant in a reversible adiabatic condition where gamma=Cp,m/Cv,m.
Homework Equations
gamma=Cp,m/Cv,m.
pV^gamma=constant, rev. adiabatic
pv=constant, rev. ideal
The Attempt at a Solution
p1v1^(Cpm/Cvm)=p2v2^(Cpm/Cvm) take ln and mult both sides by the Cvm/Cpm
ln p1v1 = ln p2v2 e to both sides
p1v1=p2v2
p1v1/p2v2 = 1