Properties of the dirac delta function

ptabor
Messages
14
Reaction score
0
I'm trying to show that
\int \delta \prime(x-x')f(x') dx = f\prime(x)
can I differentiate delta with respect to x' instead (giving me a minus sign), and then integrate by parts and note that the delta function is zero at the boundaries? this will give me an integral involving f' and delta, so the f' would come out - but I'm not sure that this will shift the argument of f to x.
Shankar demonstrates the property on page 62, but I'd like to know if my method is valid.
 
Last edited:
Physics news on Phys.org
Hm, assuming that the integration on the left hand side is actually over x^\prime and that x is within the limits of the integration I believe that you can prove this using integration by parts.

Edit: Sorry, that's what you said :smile:

I took a look at Shankar and I like his way better.
 
Last edited:
yes, his derivation is more tidy and more direct. i did the proof using integration by parts first, and then happened upon his.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top