danoonez
- 12
- 0
From
<br /> \int_{0}^{L} A^2 sin^2 \frac {n \pi x} {L} dx = 1<br />
show that
<br /> A = \sqrt {\frac {2} {L}<br />
Here's what I did:
First bring A^2 out so that I have:
<br /> A^2 \int_{0}^{L} sin^2 \frac {n \pi x} {L} dx = 1<br />
Then I use u subsitution for the integral:
<br /> \int sin^2 \frac {n \pi x} {L} dx<br />
equals:
<br /> \int \frac {L} {n \pi} sin^2 u du<br />
Pulling out the constants I get:
<br /> \frac {L} {n \pi} \int sin^2 u du<br />
Which, using an integral table, equals:
<br /> (\frac {L} {n \pi}) (\frac {1} {2} u - \frac {1} {4} sin 2u)<br />
Plugging u back in and putting in my limits of integration I get my definite integral:
<br /> (\frac {L} {n \pi}) \left[ \frac {n \pi x} {2L} - \frac {sin 2 n \pi x} {4 L} \right]_{0}^{L}<br />
Plugging this back into the original equation I get:
<br /> A^2 (\frac {L} {n \pi}) \left[ \frac {n \pi x} {2L} - \frac {sin 2 n \pi x} {4 L} \right]_{0}^{L} = 1<br />
Then solving for the limits of integration I get:
<br /> A^2 (\frac {L} {n \pi}) \left[ (\frac {n \pi L} {2L} - \frac {sin 2 n \pi L} {4 L}) - (0 - 0) \right] = 1<br />
Then doing some algebra I get:
<br /> A^2 (\frac {n \pi L^2} {2 L n \pi} - \frac {sin 2 n \pi L^2} {4 L n \pi}) = 1<br />
...then some scratch work...
<br /> sin \pi = 0<br />
...so...
<br /> (A^2) (\frac {n \pi L^2} {2 L n \pi}) = 1<br />
After more algebra I get:
<br /> (A^2) (\frac {L} {2}) = 1<br />
So then:
<br /> A^2 = \frac {2} {L}<br />
And finally:
<br /> A = \sqrt {\frac {2} {L}<br />
Q.E.D.
How does it look.
Sorry if it seems messy; this was my first time using LaTex.
<br /> \int_{0}^{L} A^2 sin^2 \frac {n \pi x} {L} dx = 1<br />
show that
<br /> A = \sqrt {\frac {2} {L}<br />
Here's what I did:
First bring A^2 out so that I have:
<br /> A^2 \int_{0}^{L} sin^2 \frac {n \pi x} {L} dx = 1<br />
Then I use u subsitution for the integral:
<br /> \int sin^2 \frac {n \pi x} {L} dx<br />
equals:
<br /> \int \frac {L} {n \pi} sin^2 u du<br />
Pulling out the constants I get:
<br /> \frac {L} {n \pi} \int sin^2 u du<br />
Which, using an integral table, equals:
<br /> (\frac {L} {n \pi}) (\frac {1} {2} u - \frac {1} {4} sin 2u)<br />
Plugging u back in and putting in my limits of integration I get my definite integral:
<br /> (\frac {L} {n \pi}) \left[ \frac {n \pi x} {2L} - \frac {sin 2 n \pi x} {4 L} \right]_{0}^{L}<br />
Plugging this back into the original equation I get:
<br /> A^2 (\frac {L} {n \pi}) \left[ \frac {n \pi x} {2L} - \frac {sin 2 n \pi x} {4 L} \right]_{0}^{L} = 1<br />
Then solving for the limits of integration I get:
<br /> A^2 (\frac {L} {n \pi}) \left[ (\frac {n \pi L} {2L} - \frac {sin 2 n \pi L} {4 L}) - (0 - 0) \right] = 1<br />
Then doing some algebra I get:
<br /> A^2 (\frac {n \pi L^2} {2 L n \pi} - \frac {sin 2 n \pi L^2} {4 L n \pi}) = 1<br />
...then some scratch work...
<br /> sin \pi = 0<br />
...so...
<br /> (A^2) (\frac {n \pi L^2} {2 L n \pi}) = 1<br />
After more algebra I get:
<br /> (A^2) (\frac {L} {2}) = 1<br />
So then:
<br /> A^2 = \frac {2} {L}<br />
And finally:
<br /> A = \sqrt {\frac {2} {L}<br />
Q.E.D.
How does it look.
Sorry if it seems messy; this was my first time using LaTex.