yungman
- 5,741
- 294
Homework Statement
Green's function G(x_0,y_0,x,y) =v(x_0,y_0,x,y) + h(x_0,y_0,x,y) in a region \Omega \hbox { with boundary } \Gamma. Also v(x_0,y_0,x,y) = -h(x_0,y_0,x,y) on boundary \Gamma and both v(x_0,y_0,x,y) \hbox { and }h(x_0,y_0,x,y) are harmonic function in \Omega
v=\frac{1}{2}ln[(x-x_0)^2 + (y-y_0)^2]
Let u be continuous and h is harmonic on an open disk around (x_0,y_0) in \Omega. Show that
_r\stackrel{lim}{\rightarrow}_0 \int_{C_r} u\frac{\partial h}{\partial n} ds = 0
Hint from the book: Both |u| and |\frac{\partial h}{\partial n}| are bounded near (x_0,y_0), say by M. If I_r denotes the integral in question, then |I_r| \leq 2\pi M r \rightarrow 0 \hbox { as } r\rightarrow 0
Homework Equations
Green's 1st identity:
\int _{\Omega} ( u\nabla^2 h + \nabla u \cdot \nabla h ) dx dy = \int_{\Gamma} u \frac{\partial h}{\partial n} ds
The Attempt at a Solution
h=-v \hbox { on } \Gamma \Rightarrow\; \int _{\Omega} ( u\nabla^2 h + \nabla u \cdot \nabla h ) dx dy = -\int_{\Gamma} u \frac{\partial v}{\partial n} ds = -\int_{\Gamma} u \frac{1}{r} ds = -\int^{2\pi}_{0} u d\theta
h is harmonic in \Omega\;\Rightarrow \nabla^2 h = 0
\Rightarrow\; \int _{\Omega} \nabla u \cdot \nabla h \; dx dy = -\int^{2\pi}_{0} u d\theta
I really don't know how to continue, please help.
Last edited: