Proving Poincare Algebra Using Differential Expression of Generator

Click For Summary
The discussion focuses on verifying the commutator expression for the Poincaré group using differential expressions for the generators of translation and rotation. The generator of translation is defined as Pρ = -i∂ρ, while the generator of rotation is Jμν = i(xμ∂ν - xν∂μ). A participant identifies an error in their calculation related to an extra negative sign and seeks clarification on where the mistake occurred. Another contributor points out that the sign conventions for Pρ and Jμν must be carefully considered, noting that different sources may define Jμν with opposite signs. The conversation emphasizes the importance of consistent sign conventions in deriving results in quantum field theory.
crime9894
Messages
5
Reaction score
2
Homework Statement
Using differential expressions for the generator to verify the commutator expression in Poincare group
Relevant Equations
Definition for the diffrential expressions of the generators are given below
Using differential expressions for the generator, verify the commutator expression for ##[J_{\mu\nu},P_{\rho}]=i(\eta_{\mu\rho}P_{\nu}-\eta_{\nu\rho}P_{\mu})## in Poincare group

Generator of translation: ##P_{\rho}=-i\partial_{\rho}##
Generator of rotation: ##J_{\mu\nu}=i(x_{\mu}\partial_{\nu}-x_{\nu}\partial{_\mu})##

Here is my working, I operate the commutator on a vector ##x^j##:
##[J_{\mu\nu},P_{\rho}]x^j##
##=(J_{\mu\nu}P_{\rho}-P_{\rho}J_{\mu\nu})x^j##
##=0-iP_{\rho}(x_{\mu}\partial_{\nu}-x_{\nu}\partial{_\mu})x^j##
##=-[(\partial_{\rho}x_{\mu})(\partial_{\nu}x^j)-(\partial_{\rho}x_{\nu})(\partial_{\mu}x^j)]##
##=-[\eta_{\rho\mu}(\partial_{\nu}x^j)-\eta_{\rho\nu}(\partial_{\mu}x^j)]##
##=-i(\eta_{\rho\mu}P_{\nu}x^j-\eta_{\rho\nu}P_{\mu}x^j)##
##=-i(\eta_{\rho\mu}P_{\nu}-\eta_{\rho\nu}P_{\mu})x^j##

My answer had one extra negative sign on it. Where did it go wrong?
 
Last edited:
Physics news on Phys.org
crime9894 said:
My answer had one extra negative sign on it. Where did it go wrong?
Your work looks correct to me. One has to be careful with sign conventions for ##P_\rho## and ##J_{\mu \nu}##. For example, https://www.physik.uni-bielefeld.de/~borghini/Teaching/Symmetries/02_02.pdf they get the answer that you were asked to get, but they define ##J_{\mu \nu}## with the opposite sign.
 
  • Like
Likes crime9894, JD_PM and etotheipi
And it should have the opposite sign, because ##J_{\mu \nu}=x_{\mu} p_{\nu}-x_{\nu} p_{\mu}## and then you just make the symbols operators.
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...