Proving Poincare Algebra Using Differential Expression of Generator

crime9894
Messages
5
Reaction score
2
Homework Statement
Using differential expressions for the generator to verify the commutator expression in Poincare group
Relevant Equations
Definition for the diffrential expressions of the generators are given below
Using differential expressions for the generator, verify the commutator expression for ##[J_{\mu\nu},P_{\rho}]=i(\eta_{\mu\rho}P_{\nu}-\eta_{\nu\rho}P_{\mu})## in Poincare group

Generator of translation: ##P_{\rho}=-i\partial_{\rho}##
Generator of rotation: ##J_{\mu\nu}=i(x_{\mu}\partial_{\nu}-x_{\nu}\partial{_\mu})##

Here is my working, I operate the commutator on a vector ##x^j##:
##[J_{\mu\nu},P_{\rho}]x^j##
##=(J_{\mu\nu}P_{\rho}-P_{\rho}J_{\mu\nu})x^j##
##=0-iP_{\rho}(x_{\mu}\partial_{\nu}-x_{\nu}\partial{_\mu})x^j##
##=-[(\partial_{\rho}x_{\mu})(\partial_{\nu}x^j)-(\partial_{\rho}x_{\nu})(\partial_{\mu}x^j)]##
##=-[\eta_{\rho\mu}(\partial_{\nu}x^j)-\eta_{\rho\nu}(\partial_{\mu}x^j)]##
##=-i(\eta_{\rho\mu}P_{\nu}x^j-\eta_{\rho\nu}P_{\mu}x^j)##
##=-i(\eta_{\rho\mu}P_{\nu}-\eta_{\rho\nu}P_{\mu})x^j##

My answer had one extra negative sign on it. Where did it go wrong?
 
Last edited:
Physics news on Phys.org
crime9894 said:
My answer had one extra negative sign on it. Where did it go wrong?
Your work looks correct to me. One has to be careful with sign conventions for ##P_\rho## and ##J_{\mu \nu}##. For example, https://www.physik.uni-bielefeld.de/~borghini/Teaching/Symmetries/02_02.pdf they get the answer that you were asked to get, but they define ##J_{\mu \nu}## with the opposite sign.
 
  • Like
Likes crime9894, JD_PM and etotheipi
And it should have the opposite sign, because ##J_{\mu \nu}=x_{\mu} p_{\nu}-x_{\nu} p_{\mu}## and then you just make the symbols operators.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top