Proving (x_k+1, . . . , x_n) forms a basis for V/kerT

HyperbolicMan
Messages
14
Reaction score
0
Hi, I was working through this proof in my linear al textbook and there's this one step I can't get past. Any help would be appreciated.

Homework Statement



Let V be a finite dimensional vector space, and let T be a linear map defined on V.

ker T \subseteq V and I am T \cong V/kerT

Let (y_1, . . . , y_k) be a basis of ker T. Augment this list by (x_k+1, . . . , x_n) to a basis for V: (y_1, . . . , y_k, x_k+1, . . . , x_n).

Now here's the part that's getting me:

"Obviously, (x_k+1, . . . , x_n) forms a basis of V/kerT"

Homework Equations



ker T \subseteq V and I am T \cong V/kerT

The Attempt at a Solution



I believe that span(x_k+1, . . . , x_n) is isomorphic to V/kerT (they have the same dimension), but I don't see how (x_k+1, . . . , x_n) actually forms a basis for V/kerT
 
Physics news on Phys.org
Well xn is linearly independent and it has the same dimension as V/ker T. So it's a basis.
 
hgfalling said:
Well xn is linearly independent and it has the same dimension as V/ker T. So it's a basis.

yes, but I think this only shows that (x_k+1, . . . , x_n) is basis for span(x_k+1, . . . , x_n), not for V/kerT.
 
Follows straight from the definition of basis:
  1. x_{k+1} + \ker{T}, \dots , x_{n} + \ker{T} are linearly independent in V / \ker{T};
  2. x_{k+1} + \ker{T}, \dots , x_{n} + \ker{T} span whole V / \ker{T}.

Tell me which part you have problems with.
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top