Q.M. harmonic oscillator spring constant goes to zero at t=0

FarticleFysics
Messages
9
Reaction score
0

Homework Statement



A one-dimensional harmonic oscillator is in the ground state. At t=0, the spring is cut. Find the wave-function with respect to space and time (ψ(x,t)).

Note: At t=0 the spring constant (k) is reduced to zero.


So, my question is mostly conceptual. Since the spring constant goes to zero at t=0 is it safe to assume that the problem can now be considered as a free particle problem since the potential goes to zero when 'k' goes to zero?

If this assumption is correct I should be able to solve the time independent Schrodinger equation, ψ(x,0), then multiply in the time part and solve for the constant.

I do not see how being a harmonic oscillator will affect my answer since once you cut the spring it is no longer a harmonic oscillator.

Is there something I am missing conceptually?
 
Physics news on Phys.org
Hello FarticleFysics and welcome to Physics Forums!

FarticleFysics said:
So, my question is mostly conceptual. Since the spring constant goes to zero at t=0 is it safe to assume that the problem can now be considered as a free particle problem since the potential goes to zero when 'k' goes to zero?]

Yes, the particle instantaneously becomes free at t = 0. But the wavefunction does not undergo any instantaneous change at t = 0.

##\psi(x, 0^+)## = ##\psi(x, 0^-)##

If this assumption is correct I should be able to solve the time independent Schrodinger equation, ψ(x,0), then multiply in the time part and solve for the constant.

The wavefunction at time t = 0 will not be a solution of the time independent Schrodinger equation for a free particle. But the wavefunction at t = 0 may be expanded as a superposition of solutions of the time independent, free-particle Schrodinger equation. You can then put in a time dependent factor for each member of the superposition.

I do not see how being a harmonic oscillator will affect my answer since once you cut the spring it is no longer a harmonic oscillator.
The harmonic oscillator potential can be thought of as "preparing" the quantum state of the particle at time t = 0.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top