[QM] Total angular momentum rotation operator

Rovello
Messages
3
Reaction score
0

Homework Statement


How to prove that for any representation of the spin, the state e^{-i{\pi}J_x/\hbar}|j,m\rangle
is proportional to |j,-m\rangle
The exponential term is the rotation operator where J_x is the x-component of the total angular momentum operator,
and |j,m\rangle is an eigenket.

Homework Equations



J_x=\frac{1}{2}(J_+ + J_-) where J_+ and J_- are the ladder operators.
J_±|j,m\rangle=\sqrt{(j{\mp}m)(j±m+1)}|j,m±1>

The Attempt at a Solution


Taylor series expansion of the exponential term?
e^{-i{\pi}J_x/\hbar}=1-i\frac{{\pi}J_x}{\hbar} - \frac{1}{2}(\frac{{\pi}J_x}{\hbar})^2 +...
 
Physics news on Phys.org
You have to use the equation:

U\left[ {{R}_{1}}\left( \pi \right) \right]{{J}_{3}}{{U}^{-1}}\left[ {{R}_{1}}\left( \pi \right) \right]=-{{J}_{3}}

which comes from the transformation law of the rotation generators:

U\left( R \right){{J}^{ij}}{{U}^{-1}}\left( R \right)={{R}_{k}}^{i}{{R}_{\ell }}^{j}{{J}^{k\ell }}

Now consider the eigen-value equation:

{{J}_{3}}\left| jm \right\rangle =m\left| jm \right\rangle

and make the U\left[ {{R}_{1}}\left( \pi \right) \right]{{J}_{3}}{{U}^{-1}}\left[ {{R}_{1}}\left( \pi \right) \right] appear in it, like that:

{{J}_{3}}\left| jm \right\rangle =m\left| jm \right\rangle \Rightarrow U{{J}_{3}}{{U}^{-1}}U\left| jm \right\rangle =mU\left| jm \right\rangle \Rightarrow -{{J}_{3}}U\left| jm \right\rangle =mU\left| jm \right\rangle

This shows that U\left| jm \right\rangle \equiv \exp \left( -i\pi {{J}_{1}} \right)\left| jm \right\rangle is an eigen-state of {{J}_{3}} , which corresponds to the eigen-value -m .
 
Thank you, cosmic dust!

I have one question (doubt),

if U|j,m\rangle is an eigen-state of J_z, therefore U|j,m\rangle=|j,-m\rangle, because J_z(U|j,m\rangle)=J_z|j,-m\rangle=-m|j,-m\rangle.

Isn't it?
 
Almost... To show that a state is an eigenstate of some operator, all you have to do is to show that when that operator acts on that state, gives the same state multiplied by some constant (like the last of the equalities I presented). In general, U|jm> does not have to be equal to |j,-m>, since it can be any state of the form z|j,-m>, where z is a phase factor. But, without loss of generality, you can always redifine the eigenstates of J3 or J3 its self, in such a way that the phase factor gets absorbed by the new definitions.
 
Ok! Thank you so much!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top