QFT Course: Electric & Magnetic Fields, but No Fields for Electrons?

deadringer
Messages
32
Reaction score
0
I'm studying a QFT course, and we've been asked to consider why classical physicists found it useful to introduce electric and magnetic fields, but not fields for electrons or other particles. I'm completely stumped, and would appreciate any hints. thanks
 
Physics news on Phys.org
The wave length of visible light is thousands of Angstroms so the wave propagation of photons was easily seen. Wave lengths of massive particles is much shorter, so their wave propagation was not noticed for a long time. Also, photons are bosons so macroscopic fields due to ~10^20 photons existed. Fermions cannot produce macroscopic field strengths.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top