How Can Uncertainty Product DeltaADeltaB Be Zero in Quantum Mechanics?

Gray
Messages
10
Reaction score
0

Homework Statement


Let C|+-> = +-|+->, and consider a state |psi> = cosT|+> + sinT|->. Find T such that the product of uncertainties, deltaAdeltaB, vanishes (i.e. becomes zero).

*Note: +- means plus or minus repectively.

Homework Equations


[A,B] = iC
In a previous question I proved deltaAdeltaB>=1/2|<psi|C|psi>| using the Schwarz inequality and some other stuff.

The Attempt at a Solution


So we want 1/2|<psi|C|psi>| = 0.
i.e. |<psi|CcosT|+> + <psi|CsinT|->| = 0.

Then I assumed <psi| = +|cosT + <-|sinT similarly to the psi ket.

So
|<+|(cosT)^2.C|+> + <-|sinT.C.cosT|+> + <+|cosT.C.sinT|-> + <-|(sinT)^2.C|->| = 0

Then use C|+-> = +-|+-> and similarly I assumed <+-|C = <+-|+- for the C bra.

So
|<+|(cosT)^2|+> + <-|sinTcosT|+> + <+|cosTsinT|-> + <-|(sinT)^2|->| = 0
|(cosT)^2 + sinTcosT<-|+> + sinTcosT<+|-> + (sinT)^2| = 0
|(cosT)^2 - sinTcosT<+|-> + sinTcosT<+|-> + (sinT)^2| = 0
|(cosT)^2 + (sinT)^2| = 0
which is clearly nonsense.

Are my assumptions incorrect? Am I not allowed to convert the ket formalism to the bra formalism in this manner?
 
Last edited:
Physics news on Phys.org
I came up with a different way to do the problem using <psi| = -|cosT + <+|sinT which gives me
|2sinTcosT| = 0
|sin2T| = 0 by double angle formula
T = n.Pi/2 , n an integer

But I still don't know if what I'm doing is right (actually I suspect it's wrong).
 
I posted this over three days ago. How long does it usually take? Surely someone can help with a second year QM problem?
 
your work seems fine in your first post, but I doubt the signs of the products in the pre-last
equation, try first to find out what you come up with in this:
<epsi|epsi>=1=...
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top