Question about differential equations(nonhomogenous)?

  • Thread starter Thread starter hard_assteel
  • Start date Start date
  • Tags Tags
    Differential
hard_assteel
Messages
12
Reaction score
0
For this nonhomogeneous differential equation:

-2y''+y'+y=2t^2-2t-5e^(-2t)

would the setup for the particular solution (yp) be;
Ae^(-2t)+Bt^2+Ct+D?

Thank You
 
Physics news on Phys.org
It depends on the solutions to the homogeneous problem.

What are the solutions to -2y'' + y' +y = 0?

Or, equivalently, 2y'' - y' - y = 0?

If the roots of the characteristic equation for the homogeneous equation aren't r = 0 or r = -2, then, yes, that's what you want for your particular solution.
 
the roots are -.5 and 1
 
Edit, nevermind I think its fine
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top