Question about velocity-dependent Lagrangian involving magnetic fields

anton01
Messages
4
Reaction score
0

Homework Statement


The Lagrange method does work for some velocity dependent Lagrangian. A very important
case is a charged particle moving in a magnetic field. The magnetic field can be represented as a "curl" of a vector potential ∇B = ∇xA . A uniform magnetic field B0 corresponds to a
vector potential ∇A = 1/2 B0 x r.

(a) Check that B0 = ∇xA
(b) From the Lagrangian
\frac{1}{2}mv^{2}+e\overline{v}.\overline{A}
show that the EOM derived are identical to the classical Newton's law with the Lorentz
force F = ev x B .

Homework Equations


Euler-Lagrange equations:
\frac{d}{dt}(\frac{\partial L}{\partial \dot{s_{j}}})=\frac{\partial L}{\partial s_{j}}

Triple product:
a.(b x c)=b.(c x a)
a x (b x c)=(a.c)b - (a.b)c

The Attempt at a Solution



For a, I have tried using the triple product:
∇ x A = 1/2 ∇x(Bo x r) = 1/2 [Bo(∇.r)-(∇.Bo)r]
Since Bo is uniform, its divergence is zero and so:
∇ x A =1/2 Bo(∇.r)
From here, I guess ∇.r=2 for the proof to work, but I really don't see it.

For part b, I am not even sure where to start it. As in how can I apply the E-L equations to it? What scares me the most is how exactly do I take the derivatives on a Lagrangian involving vectors.

Any help is welcome, thank you!
 
Physics news on Phys.org


(a) Looks like you have ∇.B where you should have B.∇ in your vector identity.

(b) The Lagrangian is still a scalar - it's just that it's been written with one piece that's a scalar product of two vectors. So just expand out that product and do Euler-Lagrange stuff as usual.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top