Question in divergence and curl

  • Thread starter Thread starter yungman
  • Start date Start date
  • Tags Tags
    Curl Divergence
yungman
Messages
5,741
Reaction score
294
Let ##\vec {F}(\vec {r}')## be a vector function of position vector ##\vec {r}'=\hat x x'+\hat y y'+\hat z z'##.

Question is why:
\nabla\cdot\vec {F}(\vec{r}')=\nabla\times\vec {F}(\vec{r}')=0
I understand ##\nabla## work on ##x,y,z##, not ##x',y',z'##. But what if
\vec {F}(\vec {r}')=\frac {1}{4\pi r r'}\;\hbox { where }\; r=\sqrt{x^2+y^2+z^2}

My answer is if ##\vec {F}(\vec {r}')=\frac {1}{4\pi r r'}## , then it is a vector function of both ##r,r'##...##\vec{F}(\vec {r},\vec {r}')## not just ##\vec {F}(\vec {r}')##. So ##\vec {F}(\vec {r}')## cannot have variable of ##x,y,z##. Am I correct?

Thanks
 
Last edited:
Physics news on Phys.org
Yes. By
yungman said:
Let ##\vec {F}(\vec {r}')## be a vector function of position vector ##\vec {r}'=\hat x x'+\hat y y'+\hat z z'##.

we mean that it does not depend on x, y or z, so $$\frac{\partial F}{\partial x} = \frac{\partial F}{\partial y} = \frac{\partial F}{\partial z} = 0.$$
 
  • Like
Likes 1 person
yungman said:
LBut what if
\vec {F}(\vec {r}')=\frac {1}{4\pi r r'}\;\hbox { where }\; r=\sqrt{x^2+y^2+z^2}

This equality is impossible because the right hand side is not vectorial.

But your general line of thinking is correct.
 
  • Like
Likes 1 person
Thanks for verifying this.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top