Quick vector calc question need verifying

  • Thread starter Thread starter HmBe
  • Start date Start date
  • Tags Tags
    Vector
HmBe
Messages
45
Reaction score
0

Homework Statement


flow.png



Homework Equations





The Attempt at a Solution



For the acceleration I got du/dt=0, and the rest ends up equalling (-3x)i + (-3y)j, so this is the acceleration.

A mate of mine got something slightly different, but I'm pretty sure mine is right - can anyone confirm this?

Cheers.
 
Physics news on Phys.org
Anyone?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top