1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Radius of convergence

  1. Jul 8, 2008 #1
    Hi please could you assist me: questions posted below:


    Assuming the function f is holomorphic in the disk [itex]\[D(0,1) = \{ z \in \mathbb{C}:|z| < 1\}\][/itex], prove that [itex]\[g(z) = \overline {f(\overline z )} \][/itex] is also holomorphic in D(0,1) and find its derivative?????



    Find the radii of convergence of the following series stating which result is being used.
    (a) [itex]\[\sum\limits_{k = 0}^\infty {k^{113} 2^{ - k} (z - 1)^k }
    \][/itex]

    (b)[itex]\[\sum\limits_{n = 2}^\infty {n!(z - e)^{3n} }
    \][/itex]

    (c)[itex]\[\sum\limits_{k = 0}^\infty {\frac{{z^k }}{{(k!)^2 }}}\]
    [/itex]


    (A)
    Using Ratio Test:

    [itex]\[\mathop {\lim }\limits_{k \to \infty } \left| {\frac{{a_{k + 1} }}
    {{a_k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{(k + 1)^{113} 2^{ - (k + 1)} (z - 1)^{k + 1} }}{{k^{113} 2^{ - k} (z - 1)^k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{(k + 1)^{113} 2^{ - k - 1} (z - 1)^{k + 1} }}{{k^{113} 2^{ - k} (z - 1)^k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{(k + 1)^{113} 2^{ - 1} (z - 1)}}{{k^{113} }}} \right|\][/itex]

    =[itex]\[ \frac{{(\infty + 1)^{113} 2^{ - 1} (z - 1)}}{{\infty ^{113} }} = \frac{{(z - 1)}}
    {2} < 1
    \][/itex]

    So is rad. of convergence (z-1)/2 and converging since it is less than 1??



    (B)

    Using Ratio Test:

    [itex]\[\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{a_{n + 1} }}
    {{a_n }}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{(n + 1)!(z - e)^{3(n + 1)} }}{{n!(z - e)^{3n} }}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {(n + 1)(z - e)^3 } \right| \][/itex]

    [itex]= (\infty + 1)(z - e)^3 = \infty[/itex]

    Hence, is ROC infinity and diverging since it is greater than 1?

    (C)
    Using Ratio Test:

    [itex]\[\mathop {\lim }\limits_{k \to \infty } \left| {\frac{{a_{k + 1} }}
    {{a_k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{z^{k + 1} }}{{((k + 1)!)^2 }} \times \frac{{(k!)^2 }}
    {{z^k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{z^{k + 1} }}{{z^k }} \times \frac{{(k!)^2 }}
    {{((k + 1)!)^2 }}} \right|\][/itex]

    [itex]\[= \mathop {\lim }\limits_{k \to \infty } \left| {z \times \frac{{(k!)^2 }}{{((k + 1)!)^2 }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\sqrt z \frac{{k!}}{{k + 1!}}} \right|\][/itex]

    [itex]\[ = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{\sqrt z }}
    {{k + 1}}} \right| = \frac{{\sqrt z }}{{\infty + 1}} = 0\][/itex]

    So is ROC 0 and converging since it is less than 1?
     
  2. jcsd
  3. Jul 9, 2008 #2

    Tom Mattson

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    rinatoc, you seriously need to dust off the old calculus book and study it. You won't survive complex analysis if you don't know real calculus.

    No, the radius of convergence is not (z-1)/2. The radius of convergence of a power series is a number.

    Now if the ROC is infinite, how could the series possibly diverge anywhere? Think about what you are doing!


    If the ROC is 0, then clearly the series converges only at the center.
     
  4. Jul 9, 2008 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    Rinatoc, You seem to be confusing "radius of convergence" with the "ratio test".
     
  5. Jul 9, 2008 #4
    ok after a bit more studying, would this be correct:

    (A)
    Using Ratio Test:

    [itex][\mathop {\lim }\limits_{k \to \infty } \left| {\frac{{a_{k + 1} }}
    {{a_k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{(k + 1)^{113} 2^{ - (k + 1)} (z - 1)^{k + 1} }}{{k^{113} 2^{ - k} (z - 1)^k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{(k + 1)^{113} 2^{ - k - 1} (z - 1)^{k + 1} }}{{k^{113} 2^{ - k} (z - 1)^k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{(k + 1)^{113} 2^{ - 1} (z - 1)}}{{k^{113} }}} \right|\][/itex]

    the k's go to infinity on the top and bottom so infinity/infinity = 1. Hence,

    =[itex]\[ \frac{{2^{ - 1} (z - 1)}}{{1}} = \frac{{(z - 1)}}
    {2} < 1
    \][/itex]

    = [itex]
    |z-1| < 2,
    [/itex]

    So the rad. of convergence is 2?

    (B)

    Using Ratio Test:

    [itex]\[\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{a_{n + 1} }}
    {{a_n }}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{(n + 1)!(z - e)^{3(n + 1)} }}{{n!(z - e)^{3n} }}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {(n + 1)(z - e)^3 } \right| \][/itex]

    [itex]= (\infty + 1)(z - e)^3[/itex]

    Hence, is ROC is divergent everywhere except when z = e, so the radius of conv. is 0?

    (C)
    Using Ratio Test:
    [itex]\[
    \begin{gathered}
    \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{a_{k + 1} }}
    {{a_k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{z^{k + 1} }}
    {{((k + 1)!)^2 }} \times \frac{{(k!)^2 }}
    {{z^k }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{{z^{k + 1} }}
    {{z^k }} \times \frac{{(k!)^2 }}
    {{((k + 1)!)^2 }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {z \times \frac{{(k!)^2 }}
    {{((k + 1)!)^2 }}} \right| = \mathop {\lim }\limits_{k \to \infty } \left| {z\frac{{(k!)^2 }}
    {{((k + 1)k!)^2 }}} \right| \hfill \\
    = \mathop {\lim }\limits_{k \to \infty } \left| {\frac{z}
    {{(k + 1)^2 }}} \right| = 0 < 1 \hfill \\
    \end{gathered}
    \]
    [/itex]

    So is ROC infinity?
     
  6. Jul 9, 2008 #5

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    I'm sorry, what does "mathfied" have to do with "rinotoc"?
     
  7. Jul 9, 2008 #6
    oh hi, yes i had to open a new account "rinatoc" because my mathfied account for some reason was giving an error whenever i tried logging in. i thought maybe my account got disabled or something so i opened the other one.. turned out to be some ip problem..

    but then my mathfied account is working fine now so i dont really need the rinatoc.. but i dont know how to delete the account.

    im jus following up my queries with this original account now that everything is working fine.

    many apologies for the double :)

    i reattempted the questions there. are they ok?
     
    Last edited: Jul 9, 2008
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Radius of convergence
  1. Radius of Convergence (Replies: 4)

  2. Radius of Convergence (Replies: 4)

  3. Radius of convergence (Replies: 2)

  4. Radius of convergence (Replies: 7)

  5. Radius of convergence (Replies: 6)

Loading...