Relationship between magnetic field lines and magnetic field

AI Thread Summary
The discussion focuses on demonstrating the mathematical relationship between magnetic field line density and the magnitude of the magnetic field (B). It suggests that field line density is proportional to magnetic field strength, and emphasizes the importance of using a three-dimensional model to accurately represent this relationship, as two-dimensional drawings fail to depict the inverse square law. The conversation also references Gauss' law, noting that the number of flux lines entering a volume equals those exiting, which supports the idea that field lines obey the law. Additionally, there is a call for clarification on how to mathematically define field line density and its implications in different unit systems. Overall, the participants seek a deeper understanding of how field lines relate to magnetic fields and the conservation of flux.
a1234
Messages
78
Reaction score
6
Homework Statement
Show that the density of magnetic field lines can be used as a measure of the size of the magnetic field.
Relevant Equations
psi = BAcos(theta)
As stated in the problem, I want to demonstrate mathematically that field line density is directly related to the magnitude of B. How would I be able to do this, other than simply using the flux equation and showing that for a higher flux in the same area, the magnetic field must be rise accordingly. Or would this be sufficient?
 
Physics news on Phys.org
The density of flux lines in 3 dimensions is proportional to the magnetic field strength. Drawings that are two dimensional don't show the inverse square law properly that occurs from a magnetic pole, etc. I would need to think about exactly why a 3 dimensional model gives exactly what is needed for the conservation of flux, etc, but in any case it does.

Edit: I think it probably can be demonstrated by saying that the flux lines into any box are the same as the flux lines out of the box=if they go in, they must emerge, and by Gauss' law, they then obey ## \nabla \cdot B=0 ##, just like the magnetic field, but maybe someone else can comment on this.
 
Last edited:
Charles Link said:
Edit: I think it probably can be demonstrated by saying that the flux lines into any box are the same as the flux lines out of the box=if they go in, they must emerge, and by Gauss' law, they then obey ## \nabla \cdot B=0 ##, just like the magnetic field, but maybe someone else can comment on this.
How can we show that the individual field lines obey Gauss' law? How would this be different from showing that Gauss' law is satisfied for the field?
 
a1234 said:
As stated in the problem, I want to demonstrate mathematically that field line density is directly related to the magnitude of B. How would I be able to do this, other than simply using the flux equation and showing that for a higher flux in the same area, the magnetic field must be rise accordingly. Or would this be sufficient?
It may help to start with the definition of a vector field line. If parametric curve ##\vec x(s)## is a field line, it obeys
$$\vec x'(s) = \vec B(\vec x).$$ Perhaps someone else can explain how to define field line density mathematically.
 
I learnt physics using the centimetre-gram-second (cgs) system of units, where Gauss specified that 4 pi lines of force originate from a unit magnetic pole, and the magnetic flux density is expressed in lines per cm2. So I find it hard to put my heart into the question!
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top