Relative Velocity Homework: Solve for Ball Rise Height

AI Thread Summary
A science student on a train traveling at 10.0 m/s throws a ball at a 60-degree angle, which the professor observes rising vertically. The key to solving the problem involves understanding relative velocity, where the ball's horizontal motion is countered by the train's speed. The student initially struggled with determining the correct variables but later successfully calculated the vertical velocity. Using the formula for maximum height, the student confirmed that the angle for height calculation simplifies to 90 degrees, allowing for straightforward computation. The discussion highlights the importance of relative motion in projectile problems.
artfuldodger2
Messages
2
Reaction score
0

Homework Statement


A science student is riding on a flatcar of a train traveling along a straight horizontal tract at a constant speed of 10.0m/s. The student throws a ball along a path that she judges to make an initial angle of 60.0degrees with the horizontal and to be in line with the track. The student's professor, who is standing on the ground nearby, observes the ball to rise vertically. How high does the ball rise?


Homework Equations


velocity(ab) = velocity(ae)-velocity(be)
change in y=(v{o} sin{theta})t-.5gt^2
= v{o}t+.5at^2
change in x=v{o}t

The Attempt at a Solution


I'm not sure what to assign for ab, ae and be in this problem.
Also, once I solve for the actual velocity, I'm still left with two unknowns, how far it has gone and how long it took to get there. What am I missing here?
 
Physics news on Phys.org
Since the professor just observes the ball to rise vertically one can assume that the horizontal component of the balls velocity is 10 m/s in the opposite direction to the trains motion.
 
Thank you for your reply Kurdt.

I was able to figure out the problem this morning after a good nights rest :)


I found the velocity in the vertical direction and from there it's pretty simple to find the max height using

h= v{y}^2(sin^2(theta)) / 2g

and in this case theta was 90, so it was just the velocity in the y-direction squared, over 2g.


At least, I think that's how it's done..?
 
Yeah that looks good.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top