alfredbester
- 38
- 0
A Proton, m_{1} with Kinetic energy T = 200MeV strikes a stationary proton in the lab frame.
p + p -> p + p + X
what is the maximum mass of X, which can be produced.
I think I need to make use of E^2 - P^2 c^2 is invariant.
and
In S: E = (m_{1} + m_{0})c^2 , p = p_{1}
In S ' :
E^2 - P^2 c^2 = E^2_{1}+ 2m_{0}E_{1}c^2 + m^2_{0}c^4 -T^2 (1) where E_{1} = T + m_{0}c^2
I'm not sure what is happening in the centre of mass frame, I thought that the particle would have maximum mass when there was zero K.E i.e E' = (2m_{0} + m_{x})c^2, p' = 0 in the lab frame but I got lost when I tried to equate this with (1).
p + p -> p + p + X
what is the maximum mass of X, which can be produced.
I think I need to make use of E^2 - P^2 c^2 is invariant.
and
In S: E = (m_{1} + m_{0})c^2 , p = p_{1}
In S ' :
E^2 - P^2 c^2 = E^2_{1}+ 2m_{0}E_{1}c^2 + m^2_{0}c^4 -T^2 (1) where E_{1} = T + m_{0}c^2
I'm not sure what is happening in the centre of mass frame, I thought that the particle would have maximum mass when there was zero K.E i.e E' = (2m_{0} + m_{x})c^2, p' = 0 in the lab frame but I got lost when I tried to equate this with (1).
Last edited: