Why Do These Riemann Tensor Terms Cancel Each Other Out?

Click For Summary
SUMMARY

The discussion focuses on the cancellation of terms in the derivation of the Riemann tensor, specifically the expressions involving the Christoffel symbols, ##\Gamma^{\lambda}_{\ \alpha\mu} \partial_\beta A_\lambda## and ##\Gamma^{\lambda}_{\ \beta\mu} \partial_\alpha A_\lambda##. The cancellation occurs due to the symmetry in the indices, leading to the conclusion that ##\Gamma^{\lambda}_{\ \alpha\mu} \partial_\beta A_\lambda - \Gamma^{\lambda}_{\ \beta\mu} \partial_\alpha A_\lambda = 0##. The derivation also utilizes the product rule and the properties of covariant derivatives, confirming the relationship between the derivatives and the Riemann curvature tensor, ##R^{\sigma}_{\ \mu\alpha\beta}##.

PREREQUISITES
  • Understanding of Riemann curvature tensor and its properties
  • Familiarity with Christoffel symbols and their role in differential geometry
  • Knowledge of covariant derivatives and their calculations
  • Proficiency in applying the product rule in tensor calculus
NEXT STEPS
  • Study the derivation of the Riemann curvature tensor in detail
  • Learn about the properties of Christoffel symbols in relation to curvature
  • Explore the implications of the product rule in tensor calculus
  • Investigate the applications of the Riemann tensor in general relativity
USEFUL FOR

Students and researchers in mathematics and physics, particularly those focusing on differential geometry, general relativity, and tensor calculus.

ProfDawgstein
Messages
80
Reaction score
1
I was working on the derivation of the riemann tensor and got this

(1) ##\Gamma^{\lambda}_{\ \alpha\mu} \partial_\beta A_\lambda##

and this

(2) ##\Gamma^{\lambda}_{\ \beta\mu} \partial_\alpha A_\lambda##

How do I see that they cancel (1 - 2)?

##\Gamma^{\lambda}_{\ \alpha\mu} \partial_\beta A_\lambda - \Gamma^{\lambda}_{\ \beta\mu} \partial_\alpha A_\lambda = 0##

The only difference is ##\alpha \leftrightarrow \beta##

First step was ##\left[ D_\alpha, D_\beta \right] A_\mu = D_\alpha (D_\beta A_\mu) - D_\beta (D_\alpha A_\mu)##

then

##D_\beta A_\mu = \partial_\beta A_\mu - \Gamma^{\lambda}_{\mu\beta} A_\lambda = A_{\mu ;\beta} => V_{\mu\beta}##

then another covariant derivative

##D_\alpha V_{\mu\beta} = \partial_\alpha V_{\mu\beta} - \Gamma^{\lambda}_{\ \alpha\mu} V_{\lambda\beta} - \Gamma^{\lambda}_{\ \alpha\beta} V_{\mu\lambda}##

then plug in

## D_\alpha (D_\beta A_\mu) = \partial_\alpha (\partial_\beta A_\mu - \Gamma^{\sigma}_{\ \mu\beta} A_\sigma)
- \Gamma^{\lambda}_{\ \alpha \mu} (\partial_\beta A_\lambda - \Gamma^{\sigma}_{\ \lambda \beta} A_{\sigma})
- \Gamma^{\lambda}_{\ \alpha \beta} (\partial_\lambda A_\mu - \Gamma^{\sigma}_{\ \mu\lambda} A_\sigma)##

And later

##-\Gamma^{\lambda}_{\ \alpha \mu} (\partial_\beta A_\lambda - \Gamma^{\sigma}_{\ \lambda \beta} A_{\sigma})##

which is

##-\Gamma^{\lambda}_{\ \alpha \mu} \partial_\beta A_\lambda + \Gamma^{\lambda}_{\ \alpha \mu} \Gamma^{\sigma}_{\ \lambda \beta} A_{\sigma}##

the 2nd term cancels later, but the 1st one does not (see above)

Fleisch (Students Guide to Vectors and Tensors) also does this derivation, but he never had two terms like this.
 
Last edited:
Physics news on Phys.org
updated first post a few hours ago.

Why can't I edit it now?

----------------------------------------

the 2nd calculation (##D_\beta D_\alpha##) should be the same, except that ##\alpha \leftrightarrow \beta##

could it be that I forgot the product rule for the 2nd term in ##( ... )##?

I am so stupid :(

##\partial_\alpha (\partial_\beta A_\mu - \Gamma^{\sigma}_{\ \mu\beta} A_\sigma)##

##= \partial_\alpha \partial_\beta A_\mu - \partial_\alpha (\Gamma^{\sigma}_{\ \mu\beta} A_\sigma)##

using the product rule on the 2nd term

##= \partial_\alpha \Gamma^{\sigma}_{\ \mu\beta} A_\sigma - \Gamma^{\sigma}_{\ \mu\beta} \partial_\alpha A_\sigma##

doing ##\alpha \leftrightarrow \beta## for the 2nd commutator term

##= \partial_\beta \Gamma^{\sigma}_{\ \mu\alpha} A_\sigma - \Gamma^{\sigma}_{\ \mu\alpha} \partial_\beta A_\sigma##

which just produces the terms I need to cancel the ones from post #1 :)

-------------------------------------------------------

Thanks for not posting the answer.

Sometimes it is hard to see the obvious...

-------------------------------------------------------

The full derivation now is

##A_{\mu ;\beta \alpha} = \partial_\alpha \partial_\beta A_\mu - \partial_\alpha \Gamma^{\sigma}_{\ \mu\beta} A_\sigma - \Gamma^{\sigma}_{\ \mu\beta} \partial_\alpha A_\sigma - \Gamma^{\lambda}_{\ \alpha\mu} \partial_\beta A_\lambda + \Gamma^{\lambda}_{\alpha\mu} \Gamma^{\sigma}_{\ \lambda\beta} A_\sigma - \Gamma^{\lambda}_{\ \alpha\beta} \partial_\lambda A_\mu + \Gamma^{\lambda}_{\ \alpha\beta} \Gamma^{\sigma}_{\ \mu\lambda} A_\sigma##

and

##A_{\mu ;\alpha \beta} = \partial_\beta \partial_\alpha A_\mu - \partial_\beta \Gamma^{\sigma}_{\ \mu\alpha} A_\sigma - \Gamma^{\sigma}_{\ \mu\alpha} \partial_\beta A_\sigma - \Gamma^{\lambda}_{\ \beta\mu} \partial_\alpha A_\lambda + \Gamma^{\lambda}_{\beta\mu} \Gamma^{\sigma}_{\ \lambda\alpha} A_\sigma - \Gamma^{\lambda}_{\ \beta\alpha} \partial_\lambda A_\mu + \Gamma^{\lambda}_{\ \beta\alpha} \Gamma^{\sigma}_{\ \mu\lambda} A_\sigma##

subtracting both

##A_{\mu ;\beta \alpha} - A_{\mu ;\alpha \beta}##

using symmetry of the christoffel symbols and ##\partial_\alpha \partial_\beta = \partial_\beta \partial_\alpha## and moving the minus sign out of ##( ... )## we get

##\left[ D_\alpha, D_\beta \right] A_\mu = A_{\mu ;\beta \alpha} - A_{\mu ;\alpha \beta} = - R^{\sigma}_{\ \mu\alpha\beta} A_\sigma##

where

##R^{\sigma}_{\ \mu\alpha\beta} = \partial_\alpha \Gamma^{\sigma}_{\ \mu\beta} - \partial_\beta \Gamma^{\sigma}_{\ \mu\alpha} + \Gamma^{\lambda}_{\ \beta\mu} \Gamma^{\sigma}_{\ \lambda\alpha} - \Gamma^{\lambda}_{\ \alpha\mu} \Gamma^{\sigma}_{\ \lambda\beta}##
 
Last edited:
You may also see the derivation in Dirac's book : General theory of Relativity under equation 11.1 if I'm not wrong
 
Everything is solved now.

After some messy messing around and remembering the product rule ( LOL , Thanks Newton ;) ) I got it.

Can be closed.
 
Last edited:

Similar threads

  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K