Rod rotating and hitting a mass

AI Thread Summary
The discussion revolves around the dynamics of a rod pivoting around a point and colliding with a mass. Key calculations involve determining the rod's angular velocity before and after the impact, as well as the energy lost during the collision. It highlights the importance of considering both linear and rotational kinetic energy, as well as the conservation of angular momentum. Participants note that the problem lacks sufficient information, particularly regarding the coefficient of restitution and the nature of the collision. Overall, the conversation emphasizes the complexities involved in analyzing rotational motion and energy conservation in collisions.
Karol
Messages
1,380
Reaction score
22

Homework Statement


Snap1.jpg
A is the pivot at the upper edge of the rod.
The rod of length L and mass M stays horizontally. it can pivot round it's edge. suddenly it falls, rotates round A and hits a mass m which gains velocity v.
At which angular velocity the rod reaches the mass
What is the rod's angular velocity immediately after it hits?
How much energy is lost during the hit

Homework Equations


moment of inertia of a rod round it's edge: ##I_A=\frac{1}{3}ML^2##
Conservation of momentum: ##m_1v_1+m_2v_2=m_1v_1'+m_2v_2'##
Kinetic energy of a solid body: ##E_k=\frac{1}{2}I\omega^2##

The Attempt at a Solution


The energy of height of the COM in the horizontal position transforms to kinetic:
$$\frac{1}{2}MgL=\frac{1}{2}MV^2~~\rightarrow~~V^2=gL$$
Conservation of momentum, V1 is the rod's COM velocity after the hit: ##MV=MV_1+mv##
Angular velocity, ω1 is the rod's angular velocity after: ##\frac{1}{2}L\omega_1=V_1##
$$\rightarrow~~\omega_1=\frac{2}{ML}(M\sqrt{gL}-mv)$$
The energy loss is:
$$\frac{1}{2}MgL-\left( \frac{1}{2}I_A\omega_1+mv^2 \right)$$
 
Physics news on Phys.org
Well now, interesting. Is there a question ? Or do you just want a stamp of approval (which really isn't PF business). You wouldn't get it from me anyway, because I miss things like conservation of angular momentum. I also have difficulty with your ##V^2 = gL##: it's not as if the COM is dropping over ##L/2## only: there is also rotational kinetic energy to consider !
 
As BvU observes, you have ignored the rotational energy acquired by the rod.
Also, linear momentum will not be conserved. Can you see why?

The problem as stated does not provide enough information. You need to know the coefficient of restitution in the impact. Probably should assume it is completely inelastic.
 
Conservation of energy between the initial condition and the vertical one:
$$\frac{1}{2}MgL=\frac{1}{2}I_A\omega_0^2~~\rightarrow~~\omega_0^2=\frac{3g}{L}$$
Conservation of angular momentum: ##\vec L=I\times \vec{\omega}##
$$I_A\omega_0=I_A\omega+mLv~~\rightarrow~~\omega=\omega_0-\frac{mLv}{I_A}$$
 
Karol said:
Conservation of energy between the initial condition and the vertical one:
$$\frac{1}{2}MgL=\frac{1}{2}I_A\omega_0^2~~\rightarrow~~\omega_0^2=\frac{3g}{L}$$
Conservation of angular momentum: ##\vec L=I\times \vec{\omega}##
$$I_A\omega_0=I_A\omega+mLv~~\rightarrow~~\omega=\omega_0-\frac{mLv}{I_A}$$
That all looks right, except for a possible flaw in the question. The block mass m is shown as having significant height, so its angular momentum about A will be less than mLv. Leaving that aside...

Next, you need to represent the fact that the rod does not penetrate the block. That puts a constraint on the relationship between ω and v. If we assume a fully inelastic collision then you can take that relationship as equality.
 
Last edited:
we don't assume assume inelastic collision since v, the block's velocity, is given.
 
Karol said:
we don't assume assume inelastic collision since v, the block's velocity, is given.
Good point!
 
The energy that was lost:
Initial energy is ##E_i=\frac{1}{2}MgL##
$$\Delta E=\frac{1}{2}MgL-\frac{1}{2}I_A\omega_0^2-\frac{1}{2}mv^2$$
 
Karol said:
The energy that was lost:
Initial energy is ##E_i=\frac{1}{2}MgL##
$$\Delta E=\frac{1}{2}MgL-\frac{1}{2}I_A\omega_0^2-\frac{1}{2}mv^2$$
ω, not ω0, right?
 
  • #10
right, Haruspex, thank you very much...
 
Back
Top