Rod w/ Pivot and Attached Mass Pendulum

Click For Summary

Homework Help Overview

The problem involves a solid rod with a pivot at its center and an additional mass attached to one end. The scenario describes the dynamics of the system as the mass is released from a horizontal position, focusing on determining the maximum speed of the attached mass during its motion.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants discuss energy conservation as a primary approach, contrasting it with torque and moment of inertia considerations. There are attempts to equate kinetic and potential energy, and questions arise regarding the calculation of the moment of inertia and the center of mass of the system.

Discussion Status

Some participants have offered guidance on using energy conservation principles and the rotational form of kinetic energy. There is ongoing exploration of how to calculate the center of mass and its relevance to the problem, with differing opinions on whether it is necessary to find the center of mass of the entire system.

Contextual Notes

Participants are navigating through the complexities of rotational dynamics and energy conservation, with some expressing uncertainty about the calculations and assumptions involved. The discussion reflects a mix of interpretations and approaches to the problem setup.

srekai
Messages
8
Reaction score
0

Homework Statement


A solid rod of length L and mass M has a pivot through its center and is originally horizontal. Another mass 2M is then attached firmly to one end of the rod, and released. What is the maximum speed of the mass 2M attained thereafter? (Cornell 2009)

Homework Equations


Not 100% sure, see solution below
Approach 1:
PE = mgh
KE = ##\frac{1}{2}mv^2##

Approach 2:
Torque: ##\tau = rFsin \theta##
Moment of Inertia: ##I = mr^2##
Torque: ##\tau = I \alpha##

The Attempt at a Solution


I approached this two ways, first as a potential energy problem via a pendulum.
The max velocity of this object will be achieved when the pivot is 90 degrees.
So I set the half of the arm with the mass to be a pendulum with mass ##\frac{5M}{2}##
The starting height of the pendulum will be half of the rod's length ##\frac{L}{2}##

Setting KE = PE
$$\frac{1}{2} \cdot \frac{5M}{2} \cdot v^2 = \frac{5M}{2} \cdot g \cdot \frac{L}{2}$$
$$v = \sqrt{gL}$$

This doesn't seem quite right to me of course, so I tried to approach this as a problem with torque
Setting torque equal to ##\tau = \frac{L}{2} \frac{5M}{2} \cdot g \cdot sin(\theta)##
Then moment of Inertia is ##I = \frac{5M}{2} * \frac{L}{2}^2##

Not sure how to clear the rest of this approach.
 
Physics news on Phys.org
Energy conservation is the way to go because the acceleration is not constant so you cannot use the standard kinematic equations. For the kinetic energy you should use the rotational form which means you need to find the moment of inertia about the pivot. You also need to find where the center of mass of this thing is and find how far it drops. That should be the ##y## in ##mgy##.
 
  • Like
Likes   Reactions: srekai
So, am I correct in stating that the moment of inertia is ##I = mr^2 = \frac{5M}{2} \cdot \frac{L}{2}^2##?

Then, I would solve for KE = PE, where KE = ## \frac{1}{2} I \omega^2 = mgy = ## PE

Thereby, I solve for ##\omega## as ##\omega = \sqrt{\frac{2mgy}{I}}##, and then v = ##r \omega = \sqrt{2gy}##

My main question now is, how would I calculate y? I tried using the center of mass equation ##m_1 r_1 = m_2 r_2##, and this means that ##r_1 = 5r_2##. Not sure how to go beyond this.

Supposing I use the CoM equation as this ##x_{cm} = \frac{m_1x_1 + m_2x_2}{m_1+m_2}##, with ##x_1## as 0, and ##x_2## as L, I can set ##x_{cm} = \frac{5}{6} L##, is this my value?
 
Last edited:
I actually don't think you need to find the center of mass of the entire system. Does the center of mass of the rod (without the attached mass) change?
 
  • Like
Likes   Reactions: Delta2 and TSny
person123 said:
I actually don't think you need to find the center of mass of the entire system
Yes, it is almost always easier to deal with moments of inertia, momenta, energy... separately for the simple components rather than as a compound body.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
996
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
Replies
10
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K